These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. Aging in ferromagnetic ordering: full decay and finite-size scaling of autocorrelation. Midya J; Majumder S; Das SK J Phys Condens Matter; 2014 Nov; 26(45):452202. PubMed ID: 25320057 [TBL] [Abstract][Full Text] [Related]
83. Curvature-driven coarsening in the two-dimensional Potts model. Loureiro MP; Arenzon JJ; Cugliandolo LF; Sicilia A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021129. PubMed ID: 20365552 [TBL] [Abstract][Full Text] [Related]
84. Nonconvergence of the Wang-Landau algorithms with multiple random walkers. Belardinelli RE; Pereyra VD Phys Rev E; 2016 May; 93(5):053306. PubMed ID: 27301004 [TBL] [Abstract][Full Text] [Related]
85. Universal aging properties at a disordered critical point. Schehr G; Paul R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016105. PubMed ID: 16090034 [TBL] [Abstract][Full Text] [Related]
86. Nonequilibrium critical relaxation of the order parameter and energy in the two-dimensional ferromagnetic Potts model. Nam K; Kim B; Lee SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056104. PubMed ID: 18643133 [TBL] [Abstract][Full Text] [Related]
87. Phase separation in three-component lipid membranes: from Monte Carlo simulations to Ginzburg-Landau equations. Reigada R; Buceta J; Gómez J; Sagués F; Lindenberg K J Chem Phys; 2008 Jan; 128(2):025102. PubMed ID: 18205477 [TBL] [Abstract][Full Text] [Related]
88. Defect statistics in the two-dimensional complex Ginzburg-Landau model. Mazenko GF Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016110. PubMed ID: 11461334 [TBL] [Abstract][Full Text] [Related]
89. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations. Szukowski G; Kamieniarz G; Musiał G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346 [TBL] [Abstract][Full Text] [Related]
90. Correction to scaling in the response function of the two-dimensional kinetic Ising model. Corberi F; Lippiello E; Zannetti M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056103. PubMed ID: 16383684 [TBL] [Abstract][Full Text] [Related]
91. Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition in Ising models. Chatterjee A; Chakrabarti BK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046113. PubMed ID: 12786442 [TBL] [Abstract][Full Text] [Related]
92. Yang-Yang anomalies and coexistence diameters: simulation of asymmetric fluids. Kim YC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051501. PubMed ID: 16089536 [TBL] [Abstract][Full Text] [Related]
93. Continuum percolation of overlapping disks with a distribution of radii having a power-law tail. Sasidevan V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022140. PubMed ID: 24032808 [TBL] [Abstract][Full Text] [Related]
94. Universal critical behavior of noisy coupled oscillators: a renormalization group study. Risler T; Prost J; Jülicher F Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016130. PubMed ID: 16090059 [TBL] [Abstract][Full Text] [Related]
95. Critical behavior of a colloid-polymer mixture confined between walls. Vink RL; Binder K; Horbach J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056118. PubMed ID: 16803009 [TBL] [Abstract][Full Text] [Related]
96. Asymptotic correlation functions in the Q-state Potts model: A universal form for point group C_{4v}. Fujimoto M; Otsuka H Phys Rev E; 2020 Sep; 102(3-1):032141. PubMed ID: 33076011 [TBL] [Abstract][Full Text] [Related]
97. Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems. Maerzke KA; Gai L; Cummings PT; McCabe C J Chem Phys; 2012 Nov; 137(20):204105. PubMed ID: 23205979 [TBL] [Abstract][Full Text] [Related]
98. Correlation-length-exponent relation for the two-dimensional random ising model. Lajko P; Igloi F Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):147-52. PubMed ID: 11046250 [TBL] [Abstract][Full Text] [Related]
99. Functional form of the Parisi overlap distribution for the three-dimensional Edwards-Anderson Ising spin glass. Berg BA; Billoire A; Janke W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):045102. PubMed ID: 12005902 [TBL] [Abstract][Full Text] [Related]
100. Uncoupled continuous-time random walk model: analytical and numerical solutions. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052141. PubMed ID: 25353773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]