These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 16803008)
1. Fluctuation-dissipation theorem and the linear Glauber model. Hase MO; Salinas SR; Tomé T; de Oliveira MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056117. PubMed ID: 16803008 [TBL] [Abstract][Full Text] [Related]
2. Aging and fluctuation-dissipation ratio in a nonequilibrium q-state lattice model. Hase MO; Tomé T; de Oliveira MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011133. PubMed ID: 20866591 [TBL] [Abstract][Full Text] [Related]
3. Fluctuation-dissipation relations in the nonequilibrium critical dynamics of Ising models. Mayer P; Berthier L; Garrahan JP; Sollich P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016116. PubMed ID: 12935209 [TBL] [Abstract][Full Text] [Related]
4. Fluctuation-dissipation relation in an Ising model without detailed balance. Andrenacci N; Corberi F; Lippiello E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046124. PubMed ID: 16711895 [TBL] [Abstract][Full Text] [Related]
5. Fluctuation dissipation relations in stationary states of interacting Brownian particles under shear. Krüger M; Fuchs M Phys Rev Lett; 2009 Apr; 102(13):135701. PubMed ID: 19392369 [TBL] [Abstract][Full Text] [Related]
6. Nonequilibrium fluctuation-dissipation relations of interacting Brownian particles driven by shear. Krüger M; Fuchs M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011408. PubMed ID: 20365374 [TBL] [Abstract][Full Text] [Related]
7. Universal aging properties at a disordered critical point. Schehr G; Paul R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016105. PubMed ID: 16090034 [TBL] [Abstract][Full Text] [Related]
8. Aging in ferromagnetic systems at criticality near four dimensions. Calabrese P; Gambassi A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066120. PubMed ID: 12188796 [TBL] [Abstract][Full Text] [Related]
9. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium. Netz RR J Chem Phys; 2018 May; 148(18):185101. PubMed ID: 29764155 [TBL] [Abstract][Full Text] [Related]
10. Aging in a free-energy landscape model for glassy relaxation. II. Fluctuation-dissipation relations. Diezemann G; Böhmer R J Chem Phys; 2006 Jun; 124(21):214507. PubMed ID: 16774423 [TBL] [Abstract][Full Text] [Related]
11. Fluctuation-dissipation theorem for the microcanonical ensemble. Bonança MV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031107. PubMed ID: 18850993 [TBL] [Abstract][Full Text] [Related]
12. Quasiequilibrium during aging of the two-dimensional Edwards-Anderson model. Franz S; Lecomte V; Mulet R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066128. PubMed ID: 14754290 [TBL] [Abstract][Full Text] [Related]
13. Fluctuation relation for heat. Noh JD; Park JM Phys Rev Lett; 2012 Jun; 108(24):240603. PubMed ID: 23004252 [TBL] [Abstract][Full Text] [Related]
14. Two-loop critical fluctuation-dissipation ratio for the relaxational dynamics of the O(N) Landau-Ginzburg Hamiltonian. Calabrese P; Gambassi A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066101. PubMed ID: 12513341 [TBL] [Abstract][Full Text] [Related]
15. Large-time dynamics and aging of a polymer chain in a random potential. Goldschmidt YY Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021804. PubMed ID: 17025463 [TBL] [Abstract][Full Text] [Related]
16. Extended fluctuation-dissipation theorem for soft matter in stationary flow. Speck T; Seifert U Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):040102. PubMed ID: 19518157 [TBL] [Abstract][Full Text] [Related]
17. On the fluctuation theorem for the dissipation function and its connection with response theory. Evans DJ; Searles DJ; Williams SR J Chem Phys; 2008 Jan; 128(1):014504. PubMed ID: 18190201 [TBL] [Abstract][Full Text] [Related]
18. Two time scales and violation of the fluctuation-dissipation theorem in a finite dimensional model for structural glasses. Ricci-Tersenghi F; Stariolo DA; Arenzon JJ Phys Rev Lett; 2000 May; 84(19):4473-6. PubMed ID: 10990714 [TBL] [Abstract][Full Text] [Related]
19. Dynamical correlations after a quantum quench. Essler FH; Evangelisti S; Fagotti M Phys Rev Lett; 2012 Dec; 109(24):247206. PubMed ID: 23368374 [TBL] [Abstract][Full Text] [Related]
20. Fluctuation-dissipation relation and the Edwards entropy for a glassy granular compaction model. Depken M; Stinchcombe R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):065102. PubMed ID: 16089799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]