These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 16803028)
1. Regular patterns in dichotomically driven activator-inhibitor dynamics. Sailer X; Hennig D; Beato V; Engel H; Schimansky-Geier L Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056209. PubMed ID: 16803028 [TBL] [Abstract][Full Text] [Related]
2. Turing-Hopf patterns on growing domains: The torus and the sphere. Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461 [TBL] [Abstract][Full Text] [Related]
3. Turing pattern formation in fractional activator-inhibitor systems. Henry BI; Langlands TA; Wearne SL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638 [TBL] [Abstract][Full Text] [Related]
4. Chemical pattern formation induced by a shear flow in a two-layer model. Vasquez DA; Meyer J; Suedhoff H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036109. PubMed ID: 18851107 [TBL] [Abstract][Full Text] [Related]
5. Symmetric, asymmetric, and antiphase Turing patterns in a model system with two identical coupled layers. Yang L; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026211. PubMed ID: 14995552 [TBL] [Abstract][Full Text] [Related]
6. Turing pattern dynamics in an activator-inhibitor system with superdiffusion. Zhang L; Tian C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062915. PubMed ID: 25615172 [TBL] [Abstract][Full Text] [Related]
7. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate. Korvasová K; Gaffney EA; Maini PK; Ferreira MA; Klika V J Theor Biol; 2015 Feb; 367():286-295. PubMed ID: 25484005 [TBL] [Abstract][Full Text] [Related]
8. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Schüler D; Alonso S; Torcini A; Bär M Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Just W; Bose M; Bose S; Engel H; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689 [TBL] [Abstract][Full Text] [Related]
10. Stabilizing Turing patterns with subdiffusion in systems with low particle numbers. Weiss M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036213. PubMed ID: 14524874 [TBL] [Abstract][Full Text] [Related]
11. Phase dynamics of nearly stationary patterns in activator-inhibitor systems. Hagberg A; Meron E; Passot T Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6471-6. PubMed ID: 11088325 [TBL] [Abstract][Full Text] [Related]
12. Turing-like instabilities from a limit cycle. Challenger JD; Burioni R; Fanelli D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022818. PubMed ID: 26382465 [TBL] [Abstract][Full Text] [Related]
13. Solution landscape of reaction-diffusion systems reveals a nonlinear mechanism and spatial robustness of pattern formation. Wu S; Yu B; Tu Y; Zhang L ArXiv; 2024 Aug; ():. PubMed ID: 39253638 [TBL] [Abstract][Full Text] [Related]
14. Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation. Kuznetsov M; Kolobov A; Polezhaev A Phys Rev E; 2017 May; 95(5-1):052208. PubMed ID: 28618630 [TBL] [Abstract][Full Text] [Related]
15. Controlling chimera states: The influence of excitable units. Isele T; Hizanidis J; Provata A; Hövel P Phys Rev E; 2016 Feb; 93(2):022217. PubMed ID: 26986341 [TBL] [Abstract][Full Text] [Related]
16. Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection. Yochelis A; Sheintuch M Phys Chem Chem Phys; 2010 Apr; 12(16):3957-60. PubMed ID: 20379487 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction-subdiffusion systems. Chiu JW; Chiam KH Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056708. PubMed ID: 19113238 [TBL] [Abstract][Full Text] [Related]
18. Switching-induced Turing instability. Buceta J; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046202. PubMed ID: 12443294 [TBL] [Abstract][Full Text] [Related]
19. Translational and nontranslational motion of perturbed Turing patterns. Vanag VK; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066219. PubMed ID: 16241338 [TBL] [Abstract][Full Text] [Related]
20. Delay-induced Turing instability in reaction-diffusion equations. Zhang T; Zang H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052908. PubMed ID: 25493859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]