These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16803031)

  • 1. Turbulent mixing with physical mass diffusion.
    Liu X; George E; Bo W; Glimm J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056301. PubMed ID: 16803031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of scale-breaking phenomena on turbulent mixing rates.
    George E; Glimm J; Li X; Li Y; Liu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016304. PubMed ID: 16486274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New directions for Rayleigh-Taylor mixing.
    Glimm J; Sharp DH; Kaman T; Lim H
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120183. PubMed ID: 24146006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing.
    Cheng B; Glimm J; Sharp DH
    Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates.
    George E; Glimm J; Li XL; Marchese A; Xu ZL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2587-92. PubMed ID: 11854452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.
    Poujade O; Peybernes M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative modeling of bubble competition in Richtmyer-Meshkov instability.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017302. PubMed ID: 18764086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bubble interaction model for hydrodynamic unstable mixing.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of surface tension on immiscible Rayleigh-Taylor turbulence.
    Chertkov M; Kolokolov I; Lebedev V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055301. PubMed ID: 16089590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh-Taylor system.
    Tavares HS; Biferale L; Sbragaglia M; Mailybaev AA
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200396. PubMed ID: 34455841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids.
    Rollin B; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incompressible Rayleigh-Taylor mixing in circular and spherical geometries.
    Boffetta G; Musacchio S
    Phys Rev E; 2022 Feb; 105(2-2):025104. PubMed ID: 35291134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities.
    Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V
    IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonideal Rayleigh-Taylor mixing.
    Lim H; Iwerks J; Glimm J; Sharp DH
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12786-92. PubMed ID: 20615983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear diffusion model for Rayleigh-Taylor mixing.
    Boffetta G; De Lillo F; Musacchio S
    Phys Rev Lett; 2010 Jan; 104(3):034505. PubMed ID: 20366649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.