These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16803040)

  • 1. Effect of compaction history on the fluidization behavior of fine cohesive powders.
    Valverde JM; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056310. PubMed ID: 16803040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetofluidization of fine magnetite powder.
    Valverde JM; Espin MJ; Quintanilla MA; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031306. PubMed ID: 19391934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle size and interparticle force on the fluidization behavior of gas-fluidized beds.
    Valverde JM; Castellanos A; Mills P; Quintanilla MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051305. PubMed ID: 12786144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High viscosity gas fluidization of fine particles: An extended window of quasihomogeneous flow.
    Valverde JM; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021302. PubMed ID: 17025414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromechanics of fluidized beds of nanoparticles.
    Espin MJ; Valverde JM; Quintanilla MA; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011304. PubMed ID: 19257027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of vibration on the stability of a gas-fluidized bed of fine powder.
    Valverde JM; Castellanos A; Quintanilla MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021302. PubMed ID: 11497573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine cohesive powders in rotating drums: Transition from rigid-plastic flow to gas-fluidized regime.
    Castellanos A; Valverde JM; Quintanilla MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061301. PubMed ID: 12188710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capability of the TFM Approach to Predict Fluidization of Cohesive Powders.
    Askarishahi M; Salehi MS; Radl S
    Ind Eng Chem Res; 2022 Mar; 61(8):3186-3205. PubMed ID: 35264823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The characterization of fluidization behavior using a novel multichamber microscale fluid bed.
    Räsänen E; Rantanen J; Mannermaa JP; Yliruusi J
    J Pharm Sci; 2004 Mar; 93(3):780-91. PubMed ID: 14762915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws.
    Wang S; Hu X; Liu N; Liu H
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Types of gas fluidization of cohesive granular materials.
    Valverde JM; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031306. PubMed ID: 17500692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-diffusion in a gas-fluidized bed of fine powder.
    Valverde JM; Castellanos A; Sanchez Quintanilla MA
    Phys Rev Lett; 2001 Apr; 86(14):3020-3. PubMed ID: 11290097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation and sedimentation in gas-fluidized beds of cohesive powders.
    Castellanos A; Valverde JM; Quintanilla MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041304. PubMed ID: 11690018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidization electrostatics.
    Valverde JM; Quintanilla MA; Espin MJ; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031301. PubMed ID: 18517364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the gas-solids contact efficiency in a fluidized bed of CO2 adsorbent fine particles.
    Valverde JM; Pontiga F; Soria-Hoyo C; Quintanilla MA; Moreno H; Duran FJ; Espin MJ
    Phys Chem Chem Phys; 2011 Sep; 13(33):14906-9. PubMed ID: 21748143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.
    Kondo K; Ito N; Niwa T; Danjo K
    Int J Pharm; 2013 Sep; 453(2):523-32. PubMed ID: 23796831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2012 Apr; 80(3):596-603. PubMed ID: 22198291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between bulk stresses and interparticle contact forces in fine powders.
    Quintanilla MA; Castellanos A; Valverde JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031301. PubMed ID: 11580326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics of compaction of fine cohesive particles.
    Castellanos A; Valverde JM; Quintanilla MA
    Phys Rev Lett; 2005 Feb; 94(7):075501. PubMed ID: 15783824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.
    Wang H; Wu L; Zhang T; Chen R; Zhang L
    Int J Pharm; 2018 Jul; 545(1-2):153-162. PubMed ID: 29729402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.