These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 16803115)
1. Correlated hybridization in transition-metal complexes. Hübsch A; Lin JC; Pan J; Cox DL Phys Rev Lett; 2006 May; 96(19):196401. PubMed ID: 16803115 [TBL] [Abstract][Full Text] [Related]
2. Anderson impurity in a correlated conduction band. Hofstetter W; Bulla R; Vollhardt D Phys Rev Lett; 2000 May; 84(19):4417-20. PubMed ID: 10990700 [TBL] [Abstract][Full Text] [Related]
3. Mott-hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study. Held K; Keller G; Eyert V; Vollhardt D; Anisimov VI Phys Rev Lett; 2001 Jun; 86(23):5345-8. PubMed ID: 11384494 [TBL] [Abstract][Full Text] [Related]
4. Strongly correlated superconductivity and pseudogap phase near a multiband Mott insulator. Capone M; Fabrizio M; Castellani C; Tosatti E Phys Rev Lett; 2004 Jul; 93(4):047001. PubMed ID: 15323784 [TBL] [Abstract][Full Text] [Related]
5. Temperature and bath size in exact diagonalization dynamical mean field theory. Liebsch A; Ishida H J Phys Condens Matter; 2012 Feb; 24(5):053201. PubMed ID: 22156113 [TBL] [Abstract][Full Text] [Related]
6. Fast multi-orbital equation of motion impurity solver for dynamical mean field theory. Feng Q; Oppeneer PM J Phys Condens Matter; 2011 Oct; 23(42):425601. PubMed ID: 21970899 [TBL] [Abstract][Full Text] [Related]
7. A local moment approach to the degenerate Anderson impurity model. Galpin MR; Gilbert AB; Logan DE J Phys Condens Matter; 2009 Sep; 21(37):375602. PubMed ID: 21832350 [TBL] [Abstract][Full Text] [Related]
8. One-dimensional multiband correlated conductors and Anderson impurity physics. Fabrizio M; Tosatti E Phys Rev Lett; 2005 Mar; 94(10):106403. PubMed ID: 15783499 [TBL] [Abstract][Full Text] [Related]
9. Square-antiprismatic eight-coordinate complexes of divalent first-row transition metal cations: a density functional theory exploration of the electronic-structural landscape. Conradie J; Patra AK; Harrop TC; Ghosh A Inorg Chem; 2015 Feb; 54(4):1375-83. PubMed ID: 25574575 [TBL] [Abstract][Full Text] [Related]
10. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes. Seo DK J Chem Phys; 2007 Nov; 127(18):184103. PubMed ID: 18020626 [TBL] [Abstract][Full Text] [Related]
11. A functional renormalization group approach to the Anderson impurity model. Bartosch L; Freire H; Cardenas JJ; Kopietz P J Phys Condens Matter; 2009 Jul; 21(30):305602. PubMed ID: 21828555 [TBL] [Abstract][Full Text] [Related]
12. An Anderson impurity model for efficient sampling of adiabatic potential energy surfaces of transition metal complexes. LaBute MX; Endres RG; Cox DL J Chem Phys; 2004 Nov; 121(17):8221-30. PubMed ID: 15511141 [TBL] [Abstract][Full Text] [Related]
13. Disproportionation, metal-insulator transition, and critical interaction strength in Na(1/2)CoO2. Lee KW; Kunes J; Novak P; Pickett WE Phys Rev Lett; 2005 Jan; 94(2):026403. PubMed ID: 15698202 [TBL] [Abstract][Full Text] [Related]
14. Numerical renormalization group study of probability distributions for local fluctuations in the Anderson-Holstein and Holstein-Hubbard models. Hewson AC; Bauer J J Phys Condens Matter; 2010 Mar; 22(11):115602. PubMed ID: 21389469 [TBL] [Abstract][Full Text] [Related]
16. Projective quantum monte carlo method for the anderson impurity model and its application to dynamical mean field theory. Feldbacher M; Held K; Assaad FF Phys Rev Lett; 2004 Sep; 93(13):136405. PubMed ID: 15524746 [TBL] [Abstract][Full Text] [Related]
17. Theoretical investigation of the magnetic interactions of Ni9 complexes. Shoji M; Kitagawa Y; Kawakami T; Yamanaka S; Okumura M; Yamaguchi K J Phys Chem A; 2008 May; 112(17):4020-8. PubMed ID: 18393476 [TBL] [Abstract][Full Text] [Related]
18. 3d-4f magnetic interaction with density functional theory plus u approach: local Coulomb correlation and exchange pathways. Zhang Y; Yang Y; Jiang H J Phys Chem A; 2013 Dec; 117(49):13194-204. PubMed ID: 24274078 [TBL] [Abstract][Full Text] [Related]
19. Quantum phase transition in the two-band hubbard model. Costi TA; Liebsch A Phys Rev Lett; 2007 Dec; 99(23):236404. PubMed ID: 18233389 [TBL] [Abstract][Full Text] [Related]
20. Absence of spin liquid in nonfrustrated correlated systems. Hassan SR; Sénéchal D Phys Rev Lett; 2013 Mar; 110(9):096402. PubMed ID: 23496730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]