BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16803214)

  • 1. Direct numerical simulations of electrophoresis of charged colloids.
    Kim K; Nakayama Y; Yamamoto R
    Phys Rev Lett; 2006 May; 96(20):208302. PubMed ID: 16803214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic electrophoresis of charged colloids in an oscillating electric field.
    Shih C; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062317. PubMed ID: 25019786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoresis of colloidal dispersions in the low-salt regime.
    Lobaskin V; Dünweg B; Medebach M; Palberg T; Holm C
    Phys Rev Lett; 2007 Apr; 98(17):176105. PubMed ID: 17501510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravitational compression dynamics of charged colloidal crystals.
    Murai M; Okuzono T; Yamamoto M; Toyotama A; Yamanaka J
    J Colloid Interface Sci; 2012 Mar; 370(1):39-45. PubMed ID: 22284572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations.
    Semenov I; Raafatnia S; Sega M; Lobaskin V; Holm C; Kremer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022302. PubMed ID: 23496511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method.
    Nakayama Y; Kim K; Yamamoto R
    Eur Phys J E Soft Matter; 2008 Aug; 26(4):361-8. PubMed ID: 19230114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.
    Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V
    J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.
    Duval JF; Qian S
    J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoretic mobility of a charged spherical colloidal particle covered with an uncharged polymer layer.
    Ohshima H
    Electrophoresis; 2002 Jul; 23(13):1995-2000. PubMed ID: 12210250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis of nanocolloids: a molecular dynamics study.
    Salonen E; Terama E; Vattulainen I; Karttunen M
    Eur Phys J E Soft Matter; 2005 Oct; 18(2):133-42. PubMed ID: 16195818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.
    Ai Y; Joo SW; Jiang Y; Xuan X; Qian S
    Electrophoresis; 2009 Jul; 30(14):2499-506. PubMed ID: 19639572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified Henry function for the electrophoretic mobility of a charged spherical colloidal particle covered with an ion-penetrable uncharged polymer layer.
    Ohshima H
    J Colloid Interface Sci; 2002 Aug; 252(1):119-25. PubMed ID: 16290770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic mobility of a colloidal particle with constant surface charge density.
    Makino K; Ohshima H
    Langmuir; 2010 Dec; 26(23):18016-9. PubMed ID: 21047090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separability of electrostatic and hydrodynamic forces in particle electrophoresis.
    Todd BA; Cohen JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):032401. PubMed ID: 22060435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetophoresis of particles and aggregates in concentrated magnetic fluids.
    Pshenichnikov AF; Ivanov AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051401. PubMed ID: 23214778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smoluchowski equation and the colloidal charge reversal.
    Diehl A; Levin Y
    J Chem Phys; 2006 Aug; 125(5):054902. PubMed ID: 16942253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale lattice Boltzmann schemes for low Mach number flows.
    Filippova O; Schwade B; Hänel D
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):467-76. PubMed ID: 16214688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the nonlinear effects during the sedimentation process of a charged colloidal particle by direct numerical simulation.
    Keller F; Feist M; Nirschl H; Dörfler W
    J Colloid Interface Sci; 2010 Apr; 344(1):228-36. PubMed ID: 20097350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.
    Goddard BD; Nold A; Savva N; Yatsyshin P; Kalliadasis S
    J Phys Condens Matter; 2013 Jan; 25(3):035101. PubMed ID: 23220969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.