These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Photonic band gap via quantum coherence in vortex lattices of Bose-Einstein condensates. Müstecaplioğlu OE; Oktel MO Phys Rev Lett; 2005 Jun; 94(22):220404. PubMed ID: 16090371 [TBL] [Abstract][Full Text] [Related]
5. Observation of bandgap guidance of optical vortices in a tunable negative defect. Song D; Wang X; Shuldman D; Wang J; Tang L; Lou C; Xu J; Yang J; Chen Z Opt Lett; 2010 Jun; 35(12):2106-8. PubMed ID: 20548401 [TBL] [Abstract][Full Text] [Related]
6. Light localization and nonlinear beam transmission in specular amorphous photonic lattices. Ni P; Zhang P; Qi X; Yang J; Chen Z; Man W Opt Express; 2016 Feb; 24(3):2420-6. PubMed ID: 26906817 [TBL] [Abstract][Full Text] [Related]
7. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs. Gerace D; Andreani LC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056603. PubMed ID: 15244959 [TBL] [Abstract][Full Text] [Related]
8. Guiding light in optically induced ring lattices with a low-refractive-index core. Wang X; Chen Z; Yang J Opt Lett; 2006 Jun; 31(12):1887-9. PubMed ID: 16729104 [TBL] [Abstract][Full Text] [Related]
9. Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals. Stojić N; Glimm J; Deng Y; Haus JW Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056614. PubMed ID: 11736123 [TBL] [Abstract][Full Text] [Related]
10. A GaN photonic crystal membrane laser. Lin CH; Wang JY; Chen CY; Shen KC; Yeh DM; Kiang YW; Yang CC Nanotechnology; 2011 Jan; 22(2):025201. PubMed ID: 21135479 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Mohammadi S; Eftekhar AA; Khelif A; Adibi A Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763 [TBL] [Abstract][Full Text] [Related]
12. Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. Wang X; Chen Z; Kevrekidis PG Phys Rev Lett; 2006 Mar; 96(8):083904. PubMed ID: 16606183 [TBL] [Abstract][Full Text] [Related]
13. Band engineering and periodic defects doping by lattices compounding. Li Y; Pan J; Zeng J; Dong J; Wang H Opt Express; 2005 Oct; 13(21):8526-31. PubMed ID: 19498883 [TBL] [Abstract][Full Text] [Related]
15. Beam control and multi-color routing with spatial photonic defect modes. Wang X; Chen Z Opt Express; 2009 Sep; 17(19):16927-32. PubMed ID: 19770910 [TBL] [Abstract][Full Text] [Related]
16. Necklacelike solitons in optically induced photonic lattices. Yang J; Makasyuk I; Kevrekidis PG; Martin H; Malomed BA; Frantzeskakis DJ; Chen Z Phys Rev Lett; 2005 Mar; 94(11):113902. PubMed ID: 15903857 [TBL] [Abstract][Full Text] [Related]
17. Photonic band gaps based on tetragonal lattices of slanted pores. Toader O; Berciu M; John S Phys Rev Lett; 2003 Jun; 90(23):233901. PubMed ID: 12857259 [TBL] [Abstract][Full Text] [Related]
18. Photonic band gap guidance in optical fibers. Knight JC; Broeng J; Birks TA; Russell PSJ Science; 1998 Nov; 282(5393):1476-8. PubMed ID: 9822375 [TBL] [Abstract][Full Text] [Related]
19. Demonstration of a 17-GHz, high-gradient accelerator with a photonic-band-gap structure. Smirnova EI; Kesar AS; Mastovsky I; Shapiro MA; Temkin RJ Phys Rev Lett; 2005 Aug; 95(7):074801. PubMed ID: 16196787 [TBL] [Abstract][Full Text] [Related]
20. Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire. Zou Y; Chakravarty S; Wray P; Chen RT Opt Express; 2015 Mar; 23(5):6965-75. PubMed ID: 25836916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]