These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16803365)

  • 1. Displacement- and timing-noise-free gravitational-wave detection.
    Chen Y; Kawamura S
    Phys Rev Lett; 2006 Jun; 96(23):231102. PubMed ID: 16803365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New method for gravitational wave detection with atomic sensors.
    Graham PW; Hogan JM; Kasevich MA; Rajendran S
    Phys Rev Lett; 2013 Apr; 110(17):171102. PubMed ID: 23679702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Displacement-noise-free gravitational-wave detection.
    Kawamura S; Chen Y
    Phys Rev Lett; 2004 Nov; 93(21):211103. PubMed ID: 15600990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interferometers for displacement-noise-free gravitational-wave detection.
    Chen Y; Pai A; Somiya K; Kawamura S; Sato S; Kokeyama K; Ward RL; Goda K; Mikhailov EE
    Phys Rev Lett; 2006 Oct; 97(15):151103. PubMed ID: 17155314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a displacement- and frequency-noise-free interferometer in a 3D configuration for gravitational wave detection.
    Kokeyama K; Sato S; Nishizawa A; Kawamura S; Chen Y; Sugamoto A
    Phys Rev Lett; 2009 Oct; 103(17):171101. PubMed ID: 19905742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.
    Grote H; Weinert M; Adhikari RX; Affeldt C; Kringel V; Leong J; Lough J; Lück H; Schreiber E; Strain KA; Vahlbruch H; Wittel H
    Opt Express; 2016 Sep; 24(18):20107-18. PubMed ID: 27607619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of displacement- and frequency-noise-free laser interferometry using bidirectional Mach-Zehnder interferometers.
    Sato S; Kokeyama K; Ward RL; Kawamura S; Chen Y; Pai A; Somiya K
    Phys Rev Lett; 2007 Apr; 98(14):141101. PubMed ID: 17501262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subhertz interferometry at the quantum noise limit.
    Yang P; Xie B; Feng S
    Opt Lett; 2019 May; 44(9):2366-2369. PubMed ID: 31042224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves.
    Rakhmanov M
    Appl Opt; 2001 Dec; 40(36):6596-605. PubMed ID: 18364967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the detection of gravitational waves under non-Gaussian noises II. Independent component analysis.
    Morisaki S; Yokoyama J; Eda K; Itoh Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2016; 92(8):336-345. PubMed ID: 27725472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection.
    McKenzie K; Shaddock DA; McClelland DE; Buchler BC; Lam PK
    Phys Rev Lett; 2002 Jun; 88(23):231102. PubMed ID: 12059348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant speed meter for gravitational-wave detection.
    Nishizawa A; Kawamura S; Sakagami MA
    Phys Rev Lett; 2008 Aug; 101(8):081101. PubMed ID: 18764598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Precision Limits of Displacement Noise-Free Interferometers.
    Gefen T; Tarafder R; Adhikari RX; Chen Y
    Phys Rev Lett; 2024 Jan; 132(2):020801. PubMed ID: 38277601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase control of squeezed vacuum states of light in gravitational wave detectors.
    Dooley KL; Schreiber E; Vahlbruch H; Affeldt C; Leong JR; Wittel H; Grote H
    Opt Express; 2015 Apr; 23(7):8235-45. PubMed ID: 25968662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom.
    Somiya K; Miyakawa O
    Appl Opt; 2010 Aug; 49(23):4335-42. PubMed ID: 20697434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsar timing arrays: the promise of gravitational wave detection.
    Lommen AN
    Rep Prog Phys; 2015 Dec; 78(12):124901. PubMed ID: 26564968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors.
    Canuel B; Genin E; Vajente G; Marque J
    Opt Express; 2013 May; 21(9):10546-62. PubMed ID: 23669911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.
    Sweeney D; Mueller G
    Opt Express; 2012 Nov; 20(23):25603-12. PubMed ID: 23187379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.