These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 16803393)
1. Quantum-classical correspondence in the wave functions of andreev billiards. Kormányos A; Kaufmann Z; Cserti J; Lambert CJ Phys Rev Lett; 2006 Jun; 96(23):237002. PubMed ID: 16803393 [TBL] [Abstract][Full Text] [Related]
2. Periodic chaotic billiards: quantum-classical correspondence in energy space. Luna-Acosta GA; Méndez-Bermúdez JA; Izrailev FM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036206. PubMed ID: 11580421 [TBL] [Abstract][Full Text] [Related]
3. Semiclassical gaps in the density of states of chaotic Andreev billiards. Kuipers J; Waltner D; Petitjean C; Berkolaiko G; Richter K Phys Rev Lett; 2010 Jan; 104(2):027001. PubMed ID: 20366617 [TBL] [Abstract][Full Text] [Related]
4. Time-reversal-invariant hexagonal billiards with a point symmetry. Lima TA; do Carmo RB; Terto K; de Aguiar FM Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857 [TBL] [Abstract][Full Text] [Related]
8. Phenomenology of quantum eigenstates in mixed-type systems: Lemon billiards with complex phase space structure. Lozej Č; Lukman D; Robnik M Phys Rev E; 2022 Nov; 106(5-1):054203. PubMed ID: 36559388 [TBL] [Abstract][Full Text] [Related]
9. Duality between quantum and classical dynamics for integrable billiards. Lu WT; Zeng W; Sridhar S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046201. PubMed ID: 16711911 [TBL] [Abstract][Full Text] [Related]
10. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics. Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism. da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431 [TBL] [Abstract][Full Text] [Related]
16. Classical projected phase space density of billiards and its relation to the quantum neumann spectrum. Biswas D Phys Rev Lett; 2004 Nov; 93(20):204102. PubMed ID: 15600928 [TBL] [Abstract][Full Text] [Related]
17. Understanding quantum scattering properties in terms of purely classical dynamics: two-dimensional open chaotic billiards. Méndez-Bermúdez JA; Luna-Acosta GA; Seba P; Pichugin KN Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046207. PubMed ID: 12443299 [TBL] [Abstract][Full Text] [Related]
18. Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime. Goussev A; Dorfman JR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016204. PubMed ID: 16907174 [TBL] [Abstract][Full Text] [Related]
19. Crossover from regular to irregular behavior in current flow through open billiards. Berggren KF; Sadreev AF; Starikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472 [TBL] [Abstract][Full Text] [Related]
20. Wave functions with localizations on classical periodic orbits in weakly perturbed quantum billiards. Liu CC; Lu TH; Chen YF; Huang KF Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046214. PubMed ID: 17155160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]