These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16803408)

  • 21. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic nanoparticle chain in a light field: a resonant optical sail.
    Albaladejo S; Sáenz JJ; Marqués MI
    Nano Lett; 2011 Nov; 11(11):4597-600. PubMed ID: 21942220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Opt Express; 2009 Dec; 17(26):23765-71. PubMed ID: 20052087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of multiple scattering to optical forces on a sphere in an evanescent field.
    Zang WP; Yang Y; Zhao ZY; Tian JG
    Opt Express; 2013 May; 21(10):12373-84. PubMed ID: 23736455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates.
    Shegai T; Brian B; Miljković VD; Käll M
    ACS Nano; 2011 Mar; 5(3):2036-41. PubMed ID: 21323329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials.
    He Y; He S; Gao J; Yang X
    Opt Express; 2012 Sep; 20(20):22372-82. PubMed ID: 23037385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips.
    Eckel R; Walhorn V; Pelargus C; Martini J; Enderlein J; Nann T; Anselmetti D; Ros R
    Small; 2007 Jan; 3(1):44-9. PubMed ID: 17294466
    [No Abstract]   [Full Text] [Related]  

  • 29. Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review.
    Petryayeva E; Krull UJ
    Anal Chim Acta; 2011 Nov; 706(1):8-24. PubMed ID: 21995909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of plasmon energetics on light emission induced by scanning tunneling microscopy.
    Miwa K; Sakaue M; Gumhalter B; Kasai H
    J Phys Condens Matter; 2014 Jun; 26(22):222001. PubMed ID: 24810264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity.
    Miyazaki HT; Kurokawa Y
    Phys Rev Lett; 2006 Mar; 96(9):097401. PubMed ID: 16606313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrahigh nonlinear nanoshell plasmonic waveguide with total energy confinement.
    Hossain MM; Turner MD; Gu M
    Opt Express; 2011 Nov; 19(24):23800-8. PubMed ID: 22109405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
    Mehfuz R; Chowdhury FA; Chau KJ
    Opt Express; 2012 May; 20(10):10526-37. PubMed ID: 22565678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure.
    Shen CW; Wang JY; Chuang WH; Chen HL; Lu YC; Kiang YW; Yang CC; Yang YJ
    Nanotechnology; 2009 Apr; 20(13):135202. PubMed ID: 19420488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diabolical point and conical-like diffraction in periodic plasmonic nanostructures.
    Nam SH; Taylor AJ; Efimov A
    Opt Express; 2010 May; 18(10):10120-6. PubMed ID: 20588866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-enhanced Raman scattering from ordered Ag nanocluster arrays.
    Schmidt JP; Cross SE; Buratto SK
    J Chem Phys; 2004 Dec; 121(21):10657-9. PubMed ID: 15549949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis.
    Wiley BJ; Im SH; Li ZY; McLellan J; Siekkinen A; Xia Y
    J Phys Chem B; 2006 Aug; 110(32):15666-75. PubMed ID: 16898709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging.
    Dhawan A; Duval A; Nakkach M; Barbillon G; Moreau J; Canva M; Vo-Dinh T
    Nanotechnology; 2011 Apr; 22(16):165301. PubMed ID: 21393822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating.
    Yeh WH; Petefish JW; Hillier AC
    Anal Chem; 2011 Aug; 83(15):6047-53. PubMed ID: 21688830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.