These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16803414)

  • 1. Direct observation of anharmonic coupling in the time domain with femtosecond stimulated Raman scattering.
    Kukura P; Frontiera R; Mathies RA
    Phys Rev Lett; 2006 Jun; 96(23):238303. PubMed ID: 16803414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy.
    Mehlenbacher RD; Lyons B; Wilson KC; Du Y; McCamant DW
    J Chem Phys; 2009 Dec; 131(24):244512. PubMed ID: 20059084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum theory of time-resolved femtosecond stimulated Raman spectroscopy: direct versus cascade processes and application to CDCl3.
    Zhao B; Sun Z; Lee SY
    J Chem Phys; 2011 Jan; 134(2):024307. PubMed ID: 21241099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond stimulated Raman spectroscopy.
    Kukura P; McCamant DW; Mathies RA
    Annu Rev Phys Chem; 2007; 58():461-88. PubMed ID: 17105414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigation of the direct observation of anharmonic coupling in CDCl(3) in the time domain with femtosecond stimulated Raman scattering.
    Sun Z; Fu B; Zhang DH; Lee SY
    J Chem Phys; 2009 Jan; 130(4):044312. PubMed ID: 19191390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization dependence of vibrational coupling signals in femtosecond stimulated Raman spectroscopy.
    Frontiera RR; Mathies RA
    J Chem Phys; 2007 Sep; 127(12):124501. PubMed ID: 17902915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional femtosecond stimulated Raman spectroscopy: Observation of cascading Raman signals in acetonitrile.
    Wilson KC; Lyons B; Mehlenbacher R; Sabatini R; McCamant DW
    J Chem Phys; 2009 Dec; 131(21):214502. PubMed ID: 19968346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity.
    Hoffman DP; Mathies RA
    Acc Chem Res; 2016 Apr; 49(4):616-25. PubMed ID: 27003235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion of the resonant nonlinear optical susceptibility obtained with femtosecond time-domain coherent anti-Stokes Raman scattering.
    Yang S; Ganikhanov F
    Opt Lett; 2013 Nov; 38(22):4754-7. PubMed ID: 24322124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond coherent Raman spectroscopy and its application to porphyrins.
    Schmitt M; Heid M; Schlücker S; Kiefer W
    Biopolymers; 2002; 67(4-5):226-32. PubMed ID: 12012435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive and unreactive pathways in a photochemical ring opening reaction from 2D femtosecond stimulated Raman.
    Valley DT; Hoffman DP; Mathies RA
    Phys Chem Chem Phys; 2015 Apr; 17(14):9231-40. PubMed ID: 25761064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Coherent Low-Frequency Motion in Excited-State Proton Transfer of Green Fluorescent Protein Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy.
    Fujisawa T; Kuramochi H; Hosoi H; Takeuchi S; Tahara T
    J Am Chem Soc; 2016 Mar; 138(12):3942-5. PubMed ID: 26943852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Raman scattering on the light field in natural waters: a simple assessment.
    Gordon HR
    Opt Express; 2014 Feb; 22(3):3675-83. PubMed ID: 24663659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons.
    Wu XL; Xiong SJ; Sun LT; Shen JC; Chu PK
    Small; 2009 Dec; 5(24):2823-6. PubMed ID: 19882689
    [No Abstract]   [Full Text] [Related]  

  • 15. Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy.
    Matousek P; Morris MD; Everall N; Clark IP; Towrie M; Draper E; Goodship A; Parker AW
    Appl Spectrosc; 2005 Dec; 59(12):1485-92. PubMed ID: 16390587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.
    Miller JD; Slipchenko MN; Meyer TR
    Opt Express; 2011 Jul; 19(14):13326-33. PubMed ID: 21747487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS).
    Chan CY; Cao ZL; Ong HC
    Opt Express; 2013 Jun; 21(12):14674-82. PubMed ID: 23787656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state.
    Kuramochi H; Takeuchi S; Kamikubo H; Kataoka M; Tahara T
    Sci Adv; 2019 Jun; 5(6):eaau4490. PubMed ID: 31187055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering.
    Sun Z; Lu J; Zhang DH; Lee SY
    J Chem Phys; 2008 Apr; 128(14):144114. PubMed ID: 18412430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-resonant background suppression by destructive interference in coherent anti-Stokes Raman scattering spectroscopy.
    Konorov SO; Blades MW; Turner RF
    Opt Express; 2011 Dec; 19(27):25925-34. PubMed ID: 22274181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.