These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16803414)

  • 21. Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes.
    Buckup T; Motzkus M
    Annu Rev Phys Chem; 2014; 65():39-57. PubMed ID: 24245903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarization-dependent effects in surface-enhanced Raman scattering (SERS).
    Etchegoin PG; Galloway C; Le Ru EC
    Phys Chem Chem Phys; 2006 Jun; 8(22):2624-8. PubMed ID: 16738716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin's J and K intermediates.
    Shim S; Dasgupta J; Mathies RA
    J Am Chem Soc; 2009 Jun; 131(22):7592-7. PubMed ID: 19441850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-line interferometric femtosecond stimulated Raman scattering spectroscopy.
    Dobner S; Groß P; Fallnich C
    J Chem Phys; 2013 Jun; 138(24):244201. PubMed ID: 23822236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a conical intersection in a charge-transfer dimer with two-dimensional time-resolved stimulated Raman spectroscopy.
    Hoffman DP; Ellis SR; Mathies RA
    J Phys Chem A; 2014 Jul; 118(27):4955-65. PubMed ID: 24932925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
    Niu K; Zhao B; Sun Z; Lee SY
    J Chem Phys; 2010 Feb; 132(8):084510. PubMed ID: 20192310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase.
    Heyne K; Huse N; Dreyer J; Nibbering ET; Elsaesser T; Mukamel S
    J Chem Phys; 2004 Jul; 121(2):902-13. PubMed ID: 15260622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy.
    Redeckas K; Voiciuk V; Vengris M
    Photosynth Res; 2016 May; 128(2):169-81. PubMed ID: 26742754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a tunable femtosecond stimulated raman apparatus and its application to beta-carotene.
    Shim S; Mathies RA
    J Phys Chem B; 2008 Apr; 112(15):4826-32. PubMed ID: 18363396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Symmetry properties of vibrational modes in mesoporphyrin IX dimethyl ester investigated by polarization-sensitive resonance Raman and CARS spectroscopy.
    Koster J; Popp J; Kiefer W; Schlücker S
    J Phys Chem A; 2006 Oct; 110(39):11252-9. PubMed ID: 17004734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the charge transfer reaction coordinate of 4-(dimethylamino)benzonitrile with femtosecond stimulated Raman spectroscopy.
    Rhinehart JM; Mehlenbacher RD; McCamant D
    J Phys Chem B; 2010 Nov; 114(45):14646-56. PubMed ID: 20568804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observation of structural relaxation during exciton self-trapping via excited-state resonant impulsive stimulated Raman spectroscopy.
    Mance JG; Felver JJ; Dexheimer SL
    J Chem Phys; 2015 Feb; 142(8):084309. PubMed ID: 25725733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impulsive stimulated Raman scattering: comparison between phase-sensitive and spectrally filtered techniques.
    Wahlstrand JK; Merlin R; Li X; Cundiff ST; Martinez OE
    Opt Lett; 2005 Apr; 30(8):926-8. PubMed ID: 15865401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Femtosecond stimulated Raman spectroscopy of the dark S1 excited state of carotenoid in photosynthetic light harvesting complex.
    Yoshizawa M; Nakamura R; Yoshimatsu O; Abe K; Sakai S; Nakagawa K; Fujii R; Nango M; Hashimoto H
    Acta Biochim Pol; 2012; 59(1):49-52. PubMed ID: 22428121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy.
    Fang C; Frontiera RR; Tran R; Mathies RA
    Nature; 2009 Nov; 462(7270):200-4. PubMed ID: 19907490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical study on contribution of charge transfer effect to surface-enhanced Raman scattering spectra of pyridine adsorbed on Ag(n) (n = 2-8) clusters.
    Liu S; Li Y; Zhao X; Liu X; Chen M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):205-12. PubMed ID: 21852188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the connection between optical absorption/extinction and SERS enhancements.
    Le Ru EC; Galloway C; Etchegoin PG
    Phys Chem Chem Phys; 2006 Jul; 8(26):3083-7. PubMed ID: 16804608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications.
    Kuramochi H; Takeuchi S; Tahara T
    Rev Sci Instrum; 2016 Apr; 87(4):043107. PubMed ID: 27131654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrational spectroscopy of structurally relaxed self-trapped excitons via excited-state resonant impulsive stimulated Raman spectroscopy.
    Morrissey FX; Dexheimer SL
    J Phys Chem B; 2012 Sep; 116(35):10582-9. PubMed ID: 22757623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shaping femtosecond coherent anti-Stokes Raman spectra using optimal control theory.
    Pezeshki S; Schreiber M; Kleinekathöfer U
    Phys Chem Chem Phys; 2008 Apr; 10(15):2058-66. PubMed ID: 18688359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.