These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 1680343)
1. Biogenic amines as biomarkers for neurotoxicity. Ali SF; Chang LW; Slikker W Biomed Environ Sci; 1991 Jun; 4(1-2):207-16. PubMed ID: 1680343 [TBL] [Abstract][Full Text] [Related]
2. Neurotoxicity of MDMA: neurochemical effects. Schmidt CJ; Kehne JH Ann N Y Acad Sci; 1990; 600():665-80; discussion 680-1. PubMed ID: 1979217 [No Abstract] [Full Text] [Related]
3. Neurochemical basis of neurotoxicity. Gibb JW; Johnson M; Hanson GR Neurotoxicology; 1990; 11(2):317-21. PubMed ID: 1978271 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the role of alpha-methylepinine in the neurotoxicity of MDMA. Steele TD; Brewster WK; Johnson MP; Nichols DE; Yim GK Pharmacol Biochem Behav; 1991 Feb; 38(2):345-51. PubMed ID: 1676172 [TBL] [Abstract][Full Text] [Related]
5. Selective 5-hydroxytryptamine2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats. Schmidt CJ; Abbate GM; Black CK; Taylor VL J Pharmacol Exp Ther; 1990 Nov; 255(2):478-83. PubMed ID: 1978728 [TBL] [Abstract][Full Text] [Related]
6. Reserpine causes biphasic nociceptive sensitivity alteration in conjunction with brain biogenic amine tones in rats. Oe T; Tsukamoto M; Nagakura Y Neuroscience; 2010 Sep; 169(4):1860-71. PubMed ID: 20600634 [TBL] [Abstract][Full Text] [Related]
7. The MDMA-neurotoxicity controversy: implications for clinical research with novel psychoactive drugs. Grob CS; Bravo GL; Walsh RN; Liester MB J Nerv Ment Dis; 1992 Jun; 180(6):355-6. PubMed ID: 1350614 [No Abstract] [Full Text] [Related]
8. 3,4-Methylenedioxymethamphetamine ("ecstasy") selectively destroys brain serotonin terminals in rhesus monkeys. Insel TR; Battaglia G; Johannessen JN; Marra S; De Souza EB J Pharmacol Exp Ther; 1989 Jun; 249(3):713-20. PubMed ID: 2471824 [TBL] [Abstract][Full Text] [Related]
9. Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. Stone DM; Johnson M; Hanson GR; Gibb JW J Pharmacol Exp Ther; 1988 Oct; 247(1):79-87. PubMed ID: 2902215 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of antidepressant activity of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a β-substituted phenylethylamine in mice. Dhir A; Malik S; Kessar SV; Singh KN; Kulkarni SK Eur Neuropsychopharmacol; 2011 Sep; 21(9):705-14. PubMed ID: 21277753 [TBL] [Abstract][Full Text] [Related]
11. Behavioral and neurochemical effects of orally administered MDMA in the rodent and nonhuman primate. Slikker W; Holson RR; Ali SF; Kolta MG; Paule MG; Scallet AC; McMillan DE; Bailey JR; Hong JS; Scalzo FM Neurotoxicology; 1989; 10(3):529-42. PubMed ID: 2576304 [TBL] [Abstract][Full Text] [Related]
12. Indirect biochemical evidence that reserpine methiodide produces selective depletion of peripheral biogenic amines in rats. Sreemantula S; Boini KM; Koppula S; Kilari EK; Nammi S Pharmazie; 2005 Apr; 60(4):294-7. PubMed ID: 15881611 [TBL] [Abstract][Full Text] [Related]
13. Studies of MDMA-induced neurotoxicity in nonhuman primates: a basis for evaluating long-term effects in humans. Ricaurte GA NIDA Res Monogr; 1989; 94():306-22. PubMed ID: 2575227 [TBL] [Abstract][Full Text] [Related]
14. Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells. Jones DC; Lau SS; Monks TJ J Pharmacol Exp Ther; 2004 Oct; 311(1):298-306. PubMed ID: 15169827 [TBL] [Abstract][Full Text] [Related]
15. Amphetamine derivatives interact with both plasma membrane and secretory vesicle biogenic amine transporters. Schuldiner S; Steiner-Mordoch S; Yelin R; Wall SC; Rudnick G Mol Pharmacol; 1993 Dec; 44(6):1227-31. PubMed ID: 7903417 [TBL] [Abstract][Full Text] [Related]
16. Behavioral and neurochemical consequences of long-term intravenous self-administration of MDMA and its enantiomers by rhesus monkeys. Fantegrossi WE; Woolverton WL; Kilbourn M; Sherman P; Yuan J; Hatzidimitriou G; Ricaurte GA; Woods JH; Winger G Neuropsychopharmacology; 2004 Jul; 29(7):1270-81. PubMed ID: 15039771 [TBL] [Abstract][Full Text] [Related]
17. Effects of MDMA and MDA on brain serotonin neurons: evidence from neurochemical and autoradiographic studies. De Souza EB; Battaglia G NIDA Res Monogr; 1989; 94():196-222. PubMed ID: 2575225 [TBL] [Abstract][Full Text] [Related]
18. Lack of neurotoxicity after intra-raphe micro-injections of MDMA ("ecstasy"). Paris JM; Cunningham KA NIDA Res Monogr; 1990; 105():333-4. PubMed ID: 1715034 [No Abstract] [Full Text] [Related]
19. Serotonin neurotoxicity after (+/-)3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy"): a controlled study in humans. McCann UD; Ridenour A; Shaham Y; Ricaurte GA Neuropsychopharmacology; 1994 Apr; 10(2):129-38. PubMed ID: 7517677 [TBL] [Abstract][Full Text] [Related]
20. Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. O'Callaghan JP Biomed Environ Sci; 1991 Jun; 4(1-2):197-206. PubMed ID: 1910596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]