These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16803729)

  • 1. Effect of keyswitch design of desktop and notebook keyboards related to key stiffness and typing force.
    Bufton MJ; Marklin RW; Nagurka ML; Simoneau GG
    Ergonomics; 2006 Aug; 49(10):996-1012. PubMed ID: 16803729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of keyswitch stiffness on typing force, finger electromyography, and subjective discomfort.
    Gerard MJ; Armstrong TJ; Franzblau A; Martin BJ; Rempel DM
    Am Ind Hyg Assoc J; 1999; 60(6):762-9. PubMed ID: 10635542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer keyswitch force-displacement characteristics affect muscle activity patterns during index finger tapping.
    Lee DL; Kuo PL; Jindrich DL; Dennerlein JT
    J Electromyogr Kinesiol; 2009 Oct; 19(5):810-20. PubMed ID: 18515146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of keyboard keyswitch make force on applied force and finger flexor muscle activity.
    Rempel D; Serina E; Klinenberg E; Martin BJ; Armstrong TJ; Foulke JA; Natarajan S
    Ergonomics; 1997 Aug; 40(8):800-8. PubMed ID: 9336104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards.
    Kim JH; Aulck L; Bartha MC; Harper CA; Johnson PW
    Appl Ergon; 2014 Nov; 45(6):1406-13. PubMed ID: 24856862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of applied forces in alphanumeric keyboard work.
    Armstrong TJ; Foulke JA; Martin BJ; Gerson J; Rempel DM
    Am Ind Hyg Assoc J; 1994 Jan; 55(1):30-5. PubMed ID: 8116526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of a curved computer keyboard.
    McLoone HE; Jacobson M; Clark P; Opina R; Hegg C; Johnson P
    Ergonomics; 2009 Dec; 52(12):1529-39. PubMed ID: 19941185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can digital signals from the keyboard capture force exposures during typing?
    Kim JH; Johnson PW
    Work; 2012; 41 Suppl 1():2588-90. PubMed ID: 22317110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of negatively sloped keyboard wedges on risk factors for upper extremity work-related musculoskeletal disorders and user performance.
    Woods M; Babski-Reeves K
    Ergonomics; 2005 Dec; 48(15):1793-808. PubMed ID: 16373317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of key stiffness on force and the development of fatigue while typing.
    Gerard MJ; Armstrong TJ; Foulke JA; Martin BJ
    Am Ind Hyg Assoc J; 1996 Sep; 57(9):849-54. PubMed ID: 8865594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability of using digital signals from the keyboard to capture typing force exposures.
    Kim JH; Johnson PW
    Ergonomics; 2012; 55(11):1395-403. PubMed ID: 22897644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of the ergonomics of three computer keyboards.
    Zecevic A; Miller DI; Harburn K
    Ergonomics; 2000 Jan; 43(1):55-72. PubMed ID: 10661693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of keyswitch design and finger posture on finger joint kinematics and dynamics during tapping on computer keyswitches.
    Jindrich DL; Balakrishnan AD; Dennerlein JT
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):600-8. PubMed ID: 15234484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mind the Gap: The Effect of Keyboard Key Gap and Pitch on Typing Speed, Accuracy, and Usability, Part 3.
    Madison H; Pereira A; Korshøj M; Taylor L; Barr A; Rempel D
    Hum Factors; 2015 Nov; 57(7):1188-94. PubMed ID: 26002872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of six keyboard designs on wrist and forearm postures.
    Rempel D; Barr A; Brafman D; Young E
    Appl Ergon; 2007 May; 38(3):293-8. PubMed ID: 16806042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. University students' notebook computer use: lessons learned using e-diaries to report musculoskeletal discomfort.
    Jacobs K; Foley G; Punnett L; Hall V; Gore R; Brownson E; Ansong E; Markowitz J; McKinnon M; Steinberg S; Ing A; Wuest E; Dibiccari L
    Ergonomics; 2011 Feb; 54(2):206-19. PubMed ID: 21294018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of small, linear QWERTY keyboards.
    Hsiao HC; Wu FG; Chen CH
    Appl Ergon; 2014 May; 45(3):655-62. PubMed ID: 24075287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in typing forces, muscle activity, wrist posture, typing performance, and self-reported comfort among conventional and ultra-low travel keyboards.
    Kia K; Sisley J; Johnson PW; Kim JH
    Appl Ergon; 2019 Jan; 74():10-16. PubMed ID: 30487088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of key size of touch screen virtual keyboards on productivity, usability, and typing biomechanics.
    Kim JH; Aulck L; Thamsuwan O; Bartha MC; Johnson PW
    Hum Factors; 2014 Nov; 56(7):1235-48. PubMed ID: 25490804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design features of alternative computer keyboards: a review of experimental data.
    Marklin RW; Simoneau GG
    J Orthop Sports Phys Ther; 2004 Oct; 34(10):638-49. PubMed ID: 15552709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.