These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 16803878)
1. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2. Inomata K; Noack S; Hammam MA; Khawn H; Kinoshita H; Murata Y; Michael N; Scheerer P; Krauss N; Lamparter T J Biol Chem; 2006 Sep; 281(38):28162-73. PubMed ID: 16803878 [TBL] [Abstract][Full Text] [Related]
2. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores. Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981 [TBL] [Abstract][Full Text] [Related]
3. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts. Inomata K; Hammam MA; Kinoshita H; Murata Y; Khawn H; Noack S; Michael N; Lamparter T J Biol Chem; 2005 Jul; 280(26):24491-7. PubMed ID: 15878872 [TBL] [Abstract][Full Text] [Related]
4. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Lamparter T; Michael N Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635 [TBL] [Abstract][Full Text] [Related]
5. Spectral properties of phytochrome Agp2 from Agrobacterium tumefaciens are specifically modified by a compound of the cell extract. Krieger A; Molina I; Oberpichler I; Michael N; Lamparter T J Photochem Photobiol B; 2008 Oct; 93(1):16-22. PubMed ID: 18693034 [TBL] [Abstract][Full Text] [Related]
6. Light-induced conformational changes of the chromophore and the protein in phytochromes: bacterial phytochromes as model systems. Scheerer P; Michael N; Park JH; Nagano S; Choe HW; Inomata K; Borucki B; Krauss N; Lamparter T Chemphyschem; 2010 Apr; 11(6):1090-105. PubMed ID: 20373318 [TBL] [Abstract][Full Text] [Related]
7. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118 [TBL] [Abstract][Full Text] [Related]
9. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens. Scheerer P; Michael N; Park JH; Noack S; Förster C; Hammam MA; Inomata K; Choe HW; Lamparter T; Krauss N J Struct Biol; 2006 Jan; 153(1):97-102. PubMed ID: 16377207 [TBL] [Abstract][Full Text] [Related]
10. Protein conformational changes of Agrobacterium phytochrome Agp1 during chromophore assembly and photoconversion. Noack S; Michael N; Rosen R; Lamparter T Biochemistry; 2007 Apr; 46(13):4164-76. PubMed ID: 17335289 [TBL] [Abstract][Full Text] [Related]
11. Temperature effects on Agrobacterium phytochrome Agp1. Njimona I; Lamparter T PLoS One; 2011; 6(10):e25977. PubMed ID: 22043299 [TBL] [Abstract][Full Text] [Related]
12. Phytochromes from Agrobacterium tumefaciens: difference spectroscopy with extracts of wild type and knockout mutants. Oberpichler I; Molina I; Neubauer O; Lamparter T FEBS Lett; 2006 Jan; 580(2):437-42. PubMed ID: 16378606 [TBL] [Abstract][Full Text] [Related]
13. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Lamparter T; Michael N; Mittmann F; Esteban B Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11628-33. PubMed ID: 12186972 [TBL] [Abstract][Full Text] [Related]
14. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Andel F; Lagarias JC; Mathies RA Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170 [TBL] [Abstract][Full Text] [Related]
15. Photoinduced reaction mechanisms in prototypical and bathy phytochromes. López MF; Dahl M; Escobar FV; Bonomi HR; Kraskov A; Michael N; Mroginski MA; Scheerer P; Hildebrandt P Phys Chem Chem Phys; 2022 May; 24(19):11967-11978. PubMed ID: 35527718 [TBL] [Abstract][Full Text] [Related]
16. Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes. Velázquez Escobar F; Buhrke D; Michael N; Sauthof L; Wilkening S; Tavraz NN; Salewski J; Frankenberg-Dinkel N; Mroginski MA; Scheerer P; Friedrich T; Siebert F; Hildebrandt P Photochem Photobiol; 2017 May; 93(3):724-732. PubMed ID: 28500706 [TBL] [Abstract][Full Text] [Related]
17. Resonance Raman analysis of the Pr and Pfr forms of phytochrome. Fodor SP; Lagarias JC; Mathies RA Biochemistry; 1990 Dec; 29(50):11141-6. PubMed ID: 2271702 [TBL] [Abstract][Full Text] [Related]
18. Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes. Fernandez Lopez M; Nguyen AD; Velazquez Escobar F; González R; Michael N; Nogacz Ż; Piwowarski P; Bartl F; Siebert F; Heise I; Scheerer P; Gärtner W; Mroginski MA; Hildebrandt P Biochemistry; 2019 Aug; 58(33):3504-3519. PubMed ID: 31348653 [TBL] [Abstract][Full Text] [Related]
19. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Strambi A; Durbeej B Photochem Photobiol Sci; 2011 Apr; 10(4):569-79. PubMed ID: 21253657 [TBL] [Abstract][Full Text] [Related]
20. Assembly of synthetic locked phycocyanobilin derivatives with phytochrome in vitro and in vivo in Ceratodon purpureus and Arabidopsis. Yang R; Nishiyama K; Kamiya A; Ukaji Y; Inomata K; Lamparter T Plant Cell; 2012 May; 24(5):1936-51. PubMed ID: 22582099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]