BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1680397)

  • 1. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles.
    de Kroon AI; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1991 Sep; 1068(2):111-24. PubMed ID: 1680397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion gradient-induced membrane translocation of model peptides.
    de Kroon AI; Vogt B; van't Hof R; de Kruijff B; de Gier J
    Biophys J; 1991 Sep; 60(3):525-37. PubMed ID: 1932545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal half of a mitochondrial presequence peptide inserts into cardiolipin-containing membranes. Consequences for the action of a transmembrane potential.
    Leenhouts JM; Török Z; Mandieau V; Goormaghtigh E; de Kruijff B
    FEBS Lett; 1996 Jun; 388(1):34-8. PubMed ID: 8654584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular model for the specific cardiolipin-presequence interactions.
    Leenhouts JM; Török Z; Chupin V; de Kruijff B
    Biochem Soc Trans; 1995 Nov; 23(4):968-71. PubMed ID: 8654876
    [No Abstract]   [Full Text] [Related]  

  • 6. Cardiolipin modulates the secondary structure of the presequence peptide of cytochrome oxidase subunit IV: a 2D 1H-NMR study.
    Chupin V; Leenhouts JM; de Kroon AI; de Kruijff B
    FEBS Lett; 1995 Oct; 373(3):239-44. PubMed ID: 7589474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of a mitochondrial presequence to natural and artificial membranes: role of surface potential.
    Swanson ST; Roise D
    Biochemistry; 1992 Jun; 31(25):5746-51. PubMed ID: 1319199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles.
    Rafalski M; Ortiz A; Rockwell A; van Ginkel LC; Lear JD; DeGrado WF; Wilschut J
    Biochemistry; 1991 Oct; 30(42):10211-20. PubMed ID: 1931950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers.
    Frey S; Tamm LK
    Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel property of a mitochondrial presequence. Its ability to induce cardiolipin-specific interbilayer contacts which are dissociated by a transmembrane potential.
    Leenhouts JM; de Gier J; de Kruijff B
    FEBS Lett; 1993 Jul; 327(2):172-6. PubMed ID: 8392951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Import of a mitochondrial presequence into protein-free phospholipid vesicles.
    Maduke M; Roise D
    Science; 1993 Apr; 260(5106):364-7. PubMed ID: 8385804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of peptides corresponding to mitochondrial presequences with membranes.
    Hoyt DW; Cyr DM; Gierasch LM; Douglas MG
    J Biol Chem; 1991 Nov; 266(32):21693-9. PubMed ID: 1834660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides.
    Hugonin L; Vukojević V; Bakalkin G; Gräslund A
    Biochim Biophys Acta; 2008 May; 1778(5):1267-73. PubMed ID: 18339302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time resolution of binding and membrane insertion of a mitochondrial signal peptide: correlation with structural changes and evidence for cooperativity.
    Golding C; Senior S; Wilson MT; O'Shea P
    Biochemistry; 1996 Aug; 35(33):10931-7. PubMed ID: 8718886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface.
    Clayton AH; Sawyer WH
    Eur Biophys J; 1999; 28(2):133-41. PubMed ID: 10028238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan fluorescence study on the interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with model membranes.
    Killian JA; Keller RC; Struyvé M; de Kroon AI; Tommassen J; de Kruijff B
    Biochemistry; 1990 Sep; 29(35):8131-7. PubMed ID: 2175648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of mastoparan X derivative having fluorescence probe in lipid bilayer membrane.
    Fujita K; Kimura S; Imanishi Y
    Biochim Biophys Acta; 1994 Oct; 1195(1):157-63. PubMed ID: 7918558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.