BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16804178)

  • 1. Candida albicans SNO1 and SNZ1 expressed in stationary-phase planktonic yeast cells and base of biofilm.
    Uppuluri P; Sarmah B; Chaffin WL
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2031-2038. PubMed ID: 16804178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.
    Watamoto T; Samaranayake LP; Egusa H; Yatani H; Seneviratne CJ
    J Med Microbiol; 2011 Sep; 60(Pt 9):1241-1247. PubMed ID: 21474609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics for the analysis of the Candida albicans biofilm lifestyle.
    Thomas DP; Bachmann SP; Lopez-Ribot JL
    Proteomics; 2006 Nov; 6(21):5795-804. PubMed ID: 17001605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human serum inhibits adhesion and biofilm formation in Candida albicans.
    Ding X; Liu Z; Su J; Yan D
    BMC Microbiol; 2014 Mar; 14():80. PubMed ID: 24673895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth.
    de Rossi BP; García C; Alcaraz E; Franco M
    Rev Argent Microbiol; 2014; 46(4):288-97. PubMed ID: 25576410
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Uppuluri P; Acosta Zaldívar M; Anderson MZ; Dunn MJ; Berman J; Lopez Ribot JL; Köhler JR
    mBio; 2018 Aug; 9(4):. PubMed ID: 30131358
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.
    James KM; MacDonald KW; Chanyi RM; Cadieux PA; Burton JP
    J Med Microbiol; 2016 Apr; 65(4):328-336. PubMed ID: 26847045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns.
    García-Sánchez S; Aubert S; Iraqui I; Janbon G; Ghigo JM; d'Enfert C
    Eukaryot Cell; 2004 Apr; 3(2):536-45. PubMed ID: 15075282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of SAP5 and SAP9 in Candida albicans biofilms: comparison of bloodstream isolates with isolates from other sources.
    Joo MY; Shin JH; Jang HC; Song ES; Kee SJ; Shin MG; Suh SP; Ryang DW
    Med Mycol; 2013 Nov; 51(8):892-6. PubMed ID: 23971863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces.
    Jackson S; Coulthwaite L; Loewy Z; Scallan A; Verran J
    J Prosthet Dent; 2014 Oct; 112(4):988-93. PubMed ID: 24726593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells.
    Martins M; Henriques M; Azeredo J; Rocha SM; Coimbra MA; Oliveira R
    Eukaryot Cell; 2007 Dec; 6(12):2429-36. PubMed ID: 17981993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial.
    Samaranayake YH; Cheung BP; Yau JY; Yeung SK; Samaranayake LP
    PLoS One; 2013; 8(5):e62902. PubMed ID: 23704884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of
    Lee HS; Kim Y
    J Microbiol Biotechnol; 2018 Mar; 28(3):482-490. PubMed ID: 29316739
    [No Abstract]   [Full Text] [Related]  

  • 14. An expanded regulatory network temporally controls Candida albicans biofilm formation.
    Fox EP; Bui CK; Nett JE; Hartooni N; Mui MC; Andes DR; Nobile CJ; Johnson AD
    Mol Microbiol; 2015 Jun; 96(6):1226-39. PubMed ID: 25784162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms.
    Ramage G; Bachmann S; Patterson TF; Wickes BL; López-Ribot JL
    J Antimicrob Chemother; 2002 Jun; 49(6):973-80. PubMed ID: 12039889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.
    Alem MA; Oteef MD; Flowers TH; Douglas LJ
    Eukaryot Cell; 2006 Oct; 5(10):1770-9. PubMed ID: 16980403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation.
    Caldara M; Marmiroli N
    Int J Antimicrob Agents; 2018 Oct; 52(4):500-505. PubMed ID: 29990546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans.
    Bonhomme J; Chauvel M; Goyard S; Roux P; Rossignol T; d'Enfert C
    Mol Microbiol; 2011 May; 80(4):995-1013. PubMed ID: 21414038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid.
    Zhang Y; Cai C; Yang Y; Weng L; Wang L
    J Med Microbiol; 2011 Nov; 60(Pt 11):1643-1650. PubMed ID: 21778264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.