These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 16804183)
21. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Potter LC; Millington P; Griffiths L; Thomas GH; Cole JA Biochem J; 1999 Nov; 344 Pt 1(Pt 1):77-84. PubMed ID: 10548536 [TBL] [Abstract][Full Text] [Related]
22. Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Stewart V Mol Microbiol; 1993 Aug; 9(3):425-34. PubMed ID: 8412692 [TBL] [Abstract][Full Text] [Related]
23. Interdependence of two NarK domains in a fused nitrate/nitrite transporter. Goddard AD; Moir JW; Richardson DJ; Ferguson SJ Mol Microbiol; 2008 Nov; 70(3):667-81. PubMed ID: 18823285 [TBL] [Abstract][Full Text] [Related]
24. Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Wood NJ; Alizadeh T; Richardson DJ; Ferguson SJ; Moir JW Mol Microbiol; 2002 Apr; 44(1):157-70. PubMed ID: 11967076 [TBL] [Abstract][Full Text] [Related]
25. Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli. Brøndsted L; Atlung T J Bacteriol; 1996 Mar; 178(6):1556-64. PubMed ID: 8626281 [TBL] [Abstract][Full Text] [Related]
26. The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nohno T; Noji S; Taniguchi S; Saito T Nucleic Acids Res; 1989 Apr; 17(8):2947-57. PubMed ID: 2657652 [TBL] [Abstract][Full Text] [Related]
27. The frdR gene of Escherichia coli globally regulates several operons involved in anaerobic growth in response to nitrate. Kalman LV; Gunsalus RP J Bacteriol; 1988 Feb; 170(2):623-9. PubMed ID: 3276662 [TBL] [Abstract][Full Text] [Related]
28. Influence of nar (nitrate reductase) genes on nitrate inhibition of formate-hydrogen lyase and fumarate reductase gene expression in Escherichia coli K-12. Stewart V; Berg BL J Bacteriol; 1988 Oct; 170(10):4437-44. PubMed ID: 3049531 [TBL] [Abstract][Full Text] [Related]
29. Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1. Sharma V; Noriega CE; Rowe JJ Appl Environ Microbiol; 2006 Jan; 72(1):695-701. PubMed ID: 16391109 [TBL] [Abstract][Full Text] [Related]
30. Molybdate-dependent transcription of hyc and nar operons of Escherichia coli requires MoeA protein and ModE-molybdate. Hasona A; Self WT; Ray RM; Shanmugam KT FEMS Microbiol Lett; 1998 Dec; 169(1):111-6. PubMed ID: 9851041 [TBL] [Abstract][Full Text] [Related]
31. Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Chang L; Wei LI; Audia JP; Morton RA; Schellhorn HE Mol Microbiol; 1999 Nov; 34(4):756-66. PubMed ID: 10564515 [TBL] [Abstract][Full Text] [Related]
32. Effect of cell growth rate on expression of the anaerobic respiratory pathway operons frdABCD, dmsABC, and narGHJI of Escherichia coli. Tseng CP; Hansen AK; Cotter P; Gunsalus RP J Bacteriol; 1994 Nov; 176(21):6599-605. PubMed ID: 7961411 [TBL] [Abstract][Full Text] [Related]
33. Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli. Tseng CP; Albrecht J; Gunsalus RP J Bacteriol; 1996 Feb; 178(4):1094-8. PubMed ID: 8576043 [TBL] [Abstract][Full Text] [Related]
34. The conserved 3' UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration. Wang C; Chao Y; Matera G; Gao Q; Vogel J Nucleic Acids Res; 2020 Feb; 48(4):2126-2143. PubMed ID: 31863581 [TBL] [Abstract][Full Text] [Related]
35. NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Brondijk TH; Nilavongse A; Filenko N; Richardson DJ; Cole JA Biochem J; 2004 Apr; 379(Pt 1):47-55. PubMed ID: 14674886 [TBL] [Abstract][Full Text] [Related]
36. Characterization of nitrate and nitrite utilization system in Rhodococcus jostii RHA1. Iino T; Miyauchi K; Kasai D; Masai E; Fukuda M J Biosci Bioeng; 2013 Jun; 115(6):600-6. PubMed ID: 23294576 [TBL] [Abstract][Full Text] [Related]
37. The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. Nilavongse A; Brondijk THC; Overton TW; Richardson DJ; Leach ER; Cole JA Microbiology (Reading); 2006 Nov; 152(Pt 11):3227-3237. PubMed ID: 17074894 [TBL] [Abstract][Full Text] [Related]
38. Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. Darwin AJ; Stewart V J Mol Biol; 1995 Aug; 251(1):15-29. PubMed ID: 7643383 [TBL] [Abstract][Full Text] [Related]
39. In vivo requirement of integration host factor for nar (nitrate reductase) operon expression in Escherichia coli K-12. Rabin RS; Collins LA; Stewart V Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8701-5. PubMed ID: 1528882 [TBL] [Abstract][Full Text] [Related]
40. 'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP. Chiang RC; Cavicchioli R; Gunsalus RP Mol Microbiol; 1997 Jun; 24(5):1049-60. PubMed ID: 9220011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]