These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16804191)

  • 1. Ultrastructure and gliding motility of Mycoplasma amphoriforme, a possible human respiratory pathogen.
    Hatchel JM; Balish RS; Duley ML; Balish MF
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2181-2189. PubMed ID: 16804191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attachment organelle ultrastructure correlates with phylogeny, not gliding motility properties, in Mycoplasma pneumoniae relatives.
    Hatchel JM; Balish MF
    Microbiology (Reading); 2008 Jan; 154(Pt 1):286-295. PubMed ID: 18174147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the function of Mycoplasma pneumoniae protein P30 from orthologous gene replacement.
    Relich RF; Balish MF
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2862-2870. PubMed ID: 21778204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal asymmetrical dumbbell structure of a gliding mycoplasma, Mycoplasma gallisepticum, revealed by negative-staining electron microscopy.
    Nakane D; Miyata M
    J Bacteriol; 2009 May; 191(10):3256-64. PubMed ID: 19286806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycoplasma amphoriforme vs M. pneumoniae: similarities and differences between patient characteristics in a regional hospital in the Netherlands.
    van Schaik ML; Patberg KW; Wallinga JG; Wolfhagen MJHM; Bruijnesteijn van Coppenraet LES
    J Med Microbiol; 2018 Sep; 67(9):1348-1350. PubMed ID: 30051803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behaviors and Energy Source of
    Mizutani M; Miyata M
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31308069
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure, function, and assembly of the terminal organelle of Mycoplasma pneumoniae.
    Krause DC; Balish MF
    FEMS Microbiol Lett; 2001 Apr; 198(1):1-7. PubMed ID: 11325545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microscopic studies of three gliding Mycoplasmas, Mycoplasma mobile, M. pneumoniae, and M. gallisepticum, by using the freeze-substitution technique.
    Shimizu T; Miyata M
    Curr Microbiol; 2002 Jun; 44(6):431-4. PubMed ID: 12000994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Study of MPN387, an Essential Protein for Gliding Motility of a Human-Pathogenic Bacterium, Mycoplasma pneumoniae.
    Kawakita Y; Kinoshita M; Furukawa Y; Tulum I; Tahara YO; Katayama E; Namba K; Miyata M
    J Bacteriol; 2016 Sep; 198(17):2352-9. PubMed ID: 27325681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Mycoplasma pneumoniae biofilms in vitro and the limited role of motility.
    Feng M; Schaff AC; Cuadra Aruguete SA; Riggs HE; Distelhorst SL; Balish MF
    Int J Med Microbiol; 2018 Apr; 308(3):324-334. PubMed ID: 29426802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel cellular organization in a gliding mycoplasma, Mycoplasma insons.
    Relich RF; Friedberg AJ; Balish MF
    J Bacteriol; 2009 Aug; 191(16):5312-4. PubMed ID: 19525350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposon mutagenesis identifies genes associated with Mycoplasma pneumoniae gliding motility.
    Hasselbring BM; Page CA; Sheppard ES; Krause DC
    J Bacteriol; 2006 Sep; 188(17):6335-45. PubMed ID: 16923901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved terminal organelle morphology and function in Mycoplasma penetrans and Mycoplasma iowae.
    Jurkovic DA; Newman JT; Balish MF
    J Bacteriol; 2012 Jun; 194(11):2877-83. PubMed ID: 22447904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Variable Internal Structure of the Mycoplasma penetrans Attachment Organelle Revealed by Biochemical and Microscopic Analyses: Implications for Attachment Organelle Mechanism and Evolution.
    Distelhorst SL; Jurkovic DA; Shi J; Jensen GJ; Balish MF
    J Bacteriol; 2017 Jun; 199(12):. PubMed ID: 28373274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular structures of mycoplasmas.
    Balish MF
    Front Biosci; 2006 May; 11():2017-27. PubMed ID: 16720287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae.
    Kawamoto A; Matsuo L; Kato T; Yamamoto H; Namba K; Miyata M
    mBio; 2016 Apr; 7(2):e00243-16. PubMed ID: 27073090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gliding mutants of Mycoplasma mobile: relationships between motility and cell morphology, cell adhesion and microcolony formation.
    Miyata M; Yamamoto H; Shimizu T; Uenoyama A; Citti C; Rosengarten R
    Microbiology (Reading); 2000 Jun; 146 ( Pt 6)():1311-1320. PubMed ID: 10846210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attachment of mycoplasmas to erythrocytes: a model to study mycoplasma attachment to the epithelium of the host respiratory tract.
    Kahane I; Pnini S; Banai M; Baseman JB; Cassell GH; Bredt W
    Isr J Med Sci; 1981 Jul; 17(7):589-92. PubMed ID: 7287399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centipede and inchworm models to explain Mycoplasma gliding.
    Miyata M
    Trends Microbiol; 2008 Jan; 16(1):6-12. PubMed ID: 18083032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal protein P41 is required to anchor the terminal organelle of the wall-less prokaryote Mycoplasma pneumoniae.
    Hasselbring BM; Krause DC
    Mol Microbiol; 2007 Jan; 63(1):44-53. PubMed ID: 17163973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.