These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16804586)

  • 1. Dissolvable membranes as sensing elements for microfluidics based biological/chemical sensors.
    Sridharamurthy SS; Agarwal AK; Beebe DJ; Jiang H
    Lab Chip; 2006 Jul; 6(7):840-2. PubMed ID: 16804586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell.
    Berdat D; Martin Rodríguez AC; Herrera F; Gijs MA
    Lab Chip; 2008 Feb; 8(2):302-8. PubMed ID: 18231670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel-based reconfigurable components for microfluidic devices.
    Kim D; Beebe DJ
    Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing.
    Tseng YT; Yang CS; Tseng FG
    Lab Chip; 2009 Sep; 9(18):2673-82. PubMed ID: 19704983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofunctional subwavelength optical waveguides for biodetection.
    Sirbuly DJ; Fischer NO; Huang SC; Artyukhin AB; Tok JB; Bakajin O; Noy A
    ACS Nano; 2008 Feb; 2(2):255-62. PubMed ID: 19206625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free quantitative DNA detection using the liquid core optical ring resonator.
    Suter JD; White IM; Zhu H; Shi H; Caldwell CW; Fan X
    Biosens Bioelectron; 2008 Feb; 23(7):1003-9. PubMed ID: 18036809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic biosensor based on an array of hydrogel-entrapped enzymes.
    Heo J; Crooks RM
    Anal Chem; 2005 Nov; 77(21):6843-51. PubMed ID: 16255581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of sensing mechanism and signal amplification in carbon nanotube based microfluidic liquid-gated transistors via pulsating gate bias.
    Wijaya IP; Nie TJ; Rodriguez I; Mhaisalkar SG
    Lab Chip; 2010 Jun; 10(11):1454-8. PubMed ID: 20464024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M; Herrmann S; Vonau W; Berthold F; Grothe H; Motrescu ER; Wolf B
    Lab Chip; 2006 Jun; 6(6):819-22. PubMed ID: 16738736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors.
    Narakathu BB; Atashbar MZ; Bejcek BE
    Biosens Bioelectron; 2010 Oct; 26(2):923-8. PubMed ID: 20655726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous integration of gels into microfluidics using a mesh carrier.
    Eker B; Temiz Y; Delamarche E
    Biomed Microdevices; 2014 Dec; 16(6):829-35. PubMed ID: 24999091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the detection limits of antispasmodic drugs electrodes by using modified membrane sensors with inner solid contact.
    Ibrahim H; Issa YM; Abu-Shawish HM
    J Pharm Biomed Anal; 2007 May; 44(1):8-15. PubMed ID: 17383844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-actuated, thermo-responsive hydrogel valves for lab on a chip.
    Wang J; Chen Z; Mauk M; Hong KS; Li M; Yang S; Bau HH
    Biomed Microdevices; 2005 Dec; 7(4):313-22. PubMed ID: 16404509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform.
    Rothert A; Deo SK; Millner L; Puckett LG; Madou MJ; Daunert S
    Anal Biochem; 2005 Jul; 342(1):11-9. PubMed ID: 15958175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips.
    Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R
    Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.