BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16804731)

  • 1. Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates.
    Simonnet F; Célérier ML; Quéinnec E
    Dev Genes Evol; 2006; 216(7-8):467-80. PubMed ID: 16804731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved roles of ems/Emx and otd/Otx genes in olfactory and visual system development in Drosophila and mouse.
    Sen S; Reichert H; VijayRaghavan K
    Open Biol; 2013 May; 3(5):120177. PubMed ID: 23635521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata.
    Nolan ED; Santibáñez-López CE; Sharma PP
    Dev Genes Evol; 2020 Mar; 230(2):137-153. PubMed ID: 31927629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic orthodenticle expression alters segment polarity gene expression but not head segment identity in the Drosophila embryo.
    Gallitano-Mendel A; Finkelstein R
    Dev Biol; 1998 Jul; 199(1):125-37. PubMed ID: 9676197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera).
    Schinko JB; Kreuzer N; Offen N; Posnien N; Wimmer EA; Bucher G
    Dev Biol; 2008 May; 317(2):600-13. PubMed ID: 18407258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenopus Xotx2 and Drosophila otd share similar activities in anterior patterning of the frog embryo.
    Lunardi A; Vignali R
    Dev Genes Evol; 2006 Sep; 216(9):511-21. PubMed ID: 16532339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coral emx-Am can substitute for Drosophila empty spiracles function in head, but not brain development.
    Hartmann B; Müller M; Hislop NR; Roth B; Tomljenovic L; Miller DJ; Reichert H
    Dev Biol; 2010 Apr; 340(1):125-33. PubMed ID: 20045685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation and variation in Ubx expression among chelicerates.
    Popadić A; Nagy L
    Evol Dev; 2001; 3(6):391-6. PubMed ID: 11806634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila.
    Hirth F; Therianos S; Loop T; Gehring WJ; Reichert H; Furukubo-Tokunaga K
    Neuron; 1995 Oct; 15(4):769-78. PubMed ID: 7576627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma.
    Sharma PP; Schwager EE; Extavour CG; Giribet G
    Evol Dev; 2012; 14(5):450-63. PubMed ID: 22947318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development.
    Lichtneckert R; Reichert H
    Heredity (Edinb); 2005 May; 94(5):465-77. PubMed ID: 15770230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-phylum regulatory potential of the ascidian Otx gene in brain development in Drosophila melanogaster.
    Adachi Y; Nagao T; Saiga H; Furukubo-Tokunaga K
    Dev Genes Evol; 2001 Jun; 211(6):269-80. PubMed ID: 11466522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd.
    Younossi-Hartenstein A; Green P; Liaw GJ; Rudolph K; Lengyel J; Hartenstein V
    Dev Biol; 1997 Feb; 182(2):270-83. PubMed ID: 9070327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pair rule gene orthologs in spider segmentation.
    Damen WG; Janssen R; Prpic NM
    Evol Dev; 2005; 7(6):618-28. PubMed ID: 16336415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a 'radiate' animal, the anthozoan cnidarian Acropora millepora.
    de Jong DM; Hislop NR; Hayward DC; Reece-Hoyes JS; Pontynen PC; Ball EE; Miller DJ
    Dev Biol; 2006 Oct; 298(2):632-43. PubMed ID: 16952346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the head gene Lox22-Otx in the leech Helobdella and the origin of the bilaterian body plan.
    Bruce AE; Shankland M
    Dev Biol; 1998 Sep; 201(1):101-12. PubMed ID: 9733577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera).
    Wilson MJ; Dearden PK
    Development; 2011 Aug; 138(16):3497-507. PubMed ID: 21771808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The homeobox gene Otx of the jellyfish Podocoryne carnea: role of a head gene in striated muscle and evolution.
    Müller P; Yanze N; Schmid V; Spring J
    Dev Biol; 1999 Dec; 216(2):582-94. PubMed ID: 10642794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets.
    Damen WG; Saridaki T; Averof M
    Curr Biol; 2002 Oct; 12(19):1711-6. PubMed ID: 12361577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum.
    Schwager EE; Pechmann M; Feitosa NM; McGregor AP; Damen WG
    Curr Biol; 2009 Aug; 19(16):1333-40. PubMed ID: 19631543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.