BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16805097)

  • 1. Inhibition of sodium glucose cotransporter-I expressed in Xenopus laevis oocytes by 4-acetoxyscirpendiol from Cordyceps takaomantana (anamorph = Paecilomyces tenuipes).
    Yoo O; Lee DH
    Med Mycol; 2006 Feb; 44(1):79-85. PubMed ID: 16805097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-acetoxyscirpendiol of Paecilomyces tenuipes inhibits Na(+)/D-glucose cotransporter expressed in Xenopus laevis oocytes.
    Yoo O; Son JH; Lee DH
    J Biochem Mol Biol; 2005 Mar; 38(2):211-7. PubMed ID: 15826499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of taurine as inhibitor of sodium glucose transporter.
    Kim HW; Lee AJ; You S; Park T; Lee DH
    Adv Exp Med Biol; 2006; 583():137-45. PubMed ID: 17153597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoptosis induction by 4beta-acetoxyscirpendiol from Paecilomyces tenuipes in human leukaemia cell lines.
    Han HC; Lindequist U; Hyun JW; Kim YH; An HS; Lee DH; Kim HW
    Pharmazie; 2004 Jan; 59(1):42-9. PubMed ID: 14964421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats.
    Choi SB; Park CH; Choi MK; Jun DW; Park S
    Biosci Biotechnol Biochem; 2004 Nov; 68(11):2257-64. PubMed ID: 15564662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of JAK3 Sensitive Na+ Coupled Glucose Carrier SGLT1 in Activated Cytotoxic T Lymphocytes.
    Bhavsar SK; Singh Y; Sharma P; Khairnar V; Hosseinzadeh Z; Zhang S; Palmada M; Sabolic I; Koepsell H; Lang KS; Lang PA; Lang F
    Cell Physiol Biochem; 2016; 39(3):1209-28. PubMed ID: 27595398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake.
    Kottra G; Daniel H
    J Pharmacol Exp Ther; 2007 Aug; 322(2):829-35. PubMed ID: 17495124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site voltage clamp fluorometry of the sodium glucose cotransporter hSGLT1.
    Gorraitz E; Hirayama BA; Paz A; Wright EM; Loo DDF
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9980-E9988. PubMed ID: 29087341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gymnemic acids inhibit sodium-dependent glucose transporter 1.
    Wang Y; Dawid C; Kottra G; Daniel H; Hofmann T
    J Agric Food Chem; 2014 Jun; 62(25):5925-31. PubMed ID: 24856809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of cell cycle gene expression responding to acetoxyscirpendiol isolated from Paecilomyces tenuipes.
    Chung EJ; Choi K; Kim HW; Lee DH
    Biol Pharm Bull; 2003 Jan; 26(1):32-6. PubMed ID: 12520168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional expression of an SGLT-1-like protein from the Xenopus laevis intestine.
    Nagata K; Hori N; Sato K; Ohta K; Tanaka H; Hiji Y
    Am J Physiol; 1999 May; 276(5):G1251-9. PubMed ID: 10330017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-glucose cotransporters display sodium- and phlorizin-dependent water permeability.
    Loike JD; Hickman S; Kuang K; Xu M; Cao L; Vera JC; Silverstein SC; Fischbarg J
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1774-9. PubMed ID: 8944663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans.
    Schulze C; Bangert A; Kottra G; Geillinger KE; Schwanck B; Vollert H; Blaschek W; Daniel H
    Mol Nutr Food Res; 2014 Sep; 58(9):1795-808. PubMed ID: 25074384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar binding of sodium-glucose cotransporters analyzed by voltage-clamp fluorometry.
    Watabe E; Kawanabe A; Kamitori K; Ichihara S; Fujiwara Y
    J Biol Chem; 2024 May; 300(5):107215. PubMed ID: 38522518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sugar specificity of Na+/glucose cotransporter from rat jejunum.
    Aoshima H; Yokoyama T; Tanizaki J; Izu H; Yamada M
    Biosci Biotechnol Biochem; 1997 Jun; 61(6):979-83. PubMed ID: 9214758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RS1 (RSC1A1) regulates the exocytotic pathway of Na+-D-glucose cotransporter SGLT1.
    Veyhl M; Keller T; Gorboulev V; Vernaleken A; Koepsell H
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1213-23. PubMed ID: 16788146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter.
    Grempler R; Augustin R; Froehner S; Hildebrandt T; Simon E; Mark M; Eickelmann P
    FEBS Lett; 2012 Feb; 586(3):248-53. PubMed ID: 22212718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1).
    Hirayama BA; Lostao MP; Panayotova-Heiermann M; Loo DD; Turk E; Wright EM
    Am J Physiol; 1996 Jun; 270(6 Pt 1):G919-26. PubMed ID: 8764197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of ENaC and other transport proteins in Xenopus oocytes is modulated by intracellular Na+.
    Kusche-Vihrog K; Segal A; Grygorczyk R; Bangel-Ruland N; Van Driessche W; Weber WM
    Cell Physiol Biochem; 2009; 23(1-3):9-24. PubMed ID: 19255496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of enzyme-susceptible glucoside bonds of phloridzin through conjugation with poly(gamma-glutamic acid).
    Sakuma S; Sagawa T; Masaoka Y; Kataoka M; Yamashita S; Shirasaka Y; Tamai I; Ikumi Y; Kida T; Akashi M
    J Control Release; 2009 Jan; 133(2):125-31. PubMed ID: 18977257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.