BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 16805604)

  • 1. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.
    Dedryvère R; Leroy S; Martinez H; Blanchard F; Lemordant D; Gonbeau D
    J Phys Chem B; 2006 Jul; 110(26):12986-92. PubMed ID: 16805604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study.
    Dedryvère R; Gireaud L; Grugeon S; Laruelle S; Tarascon JM; Gonbeau D
    J Phys Chem B; 2005 Aug; 109(33):15868-75. PubMed ID: 16853016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the Cathode-Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries.
    Kotronia A; Asfaw HD; Tai CW; Hahlin M; Brandell D; Edström K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3867-3880. PubMed ID: 33434003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries.
    Li X; Zheng J; Engelhard MH; Mei D; Li Q; Jiao S; Liu N; Zhao W; Zhang JG; Xu W
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2469-2479. PubMed ID: 29281242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes.
    Eshetu GG; Diemant T; Grugeon S; Behm RJ; Laruelle S; Armand M; Passerini S
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16087-100. PubMed ID: 27299469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries.
    Xu K; Zhuang GV; Allen JL; Lee U; Zhang SS; Ross PN; Jow TR
    J Phys Chem B; 2006 Apr; 110(15):7708-19. PubMed ID: 16610865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study.
    Philippe B; Dedryvère R; Gorgoi M; Rensmo H; Gonbeau D; Edström K
    J Am Chem Soc; 2013 Jul; 135(26):9829-42. PubMed ID: 23763546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries.
    Du P; Lu J; Lau KC; Luo X; Bareño J; Zhang X; Ren Y; Zhang Z; Curtiss LA; Sun YK; Amine K
    Phys Chem Chem Phys; 2013 Apr; 15(15):5572-81. PubMed ID: 23463031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent.
    Kalhoff J; Bresser D; Bolloli M; Alloin F; Sanchez JY; Passerini S
    ChemSusChem; 2014 Oct; 7(10):2939-46. PubMed ID: 25138922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy.
    Kurisaki T; Tanaka D; Inoue Y; Wakita H; Minofar B; Fukuda S; Ishiguro S; Umebayashi Y
    J Phys Chem B; 2012 Sep; 116(35):10870-5. PubMed ID: 22853737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries.
    Danet J; Brousse T; Rasim K; Guyomard D; Moreau P
    Phys Chem Chem Phys; 2010 Jan; 12(1):220-6. PubMed ID: 20024463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the beneficial effect of vinylene carbonate on the electrochemistry of antimony electrodes in lithium batteries.
    Martín F; Morales J; Sánchez L
    Chemphyschem; 2008 Dec; 9(17):2610-7. PubMed ID: 18988210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes.
    Borodin O; Smith GD
    J Phys Chem B; 2006 Mar; 110(12):6293-9. PubMed ID: 16553447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6.
    Borodin O; Smith GD
    J Phys Chem B; 2009 Feb; 113(6):1763-76. PubMed ID: 19146427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-dipole interactions in concentrated organic electrolytes.
    Chagnes A; Nicolis S; Carré B; Willmann P; Lemordant D
    Chemphyschem; 2003 Jun; 4(6):559-66. PubMed ID: 12836478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes.
    Wu F; Zhou H; Bai Y; Wang H; Wu C
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15098-107. PubMed ID: 26087246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery.
    Wang Q; Sun J; Chen C
    J Hazard Mater; 2009 Aug; 167(1-3):1209-14. PubMed ID: 19261386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis.
    Muñoz-Márquez MA; Zarrabeitia M; Castillo-Martínez E; Eguía-Barrio A; Rojo T; Casas-Cabanas M
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7801-8. PubMed ID: 25811538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adiponitrile-Lithium Bis(trimethylsulfonyl)imide Solutions as Alkyl Carbonate-free Electrolytes for Li
    Farhat D; Ghamouss F; Maibach J; Edström K; Lemordant D
    Chemphyschem; 2017 May; 18(10):1333-1344. PubMed ID: 28231422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.