These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 16805870)

  • 21. Saccadic performance in questionnaire-identified schizotypes over time.
    Gooding DC; Shea HB; Matts CW
    Psychiatry Res; 2005 Feb; 133(2-3):173-86. PubMed ID: 15740993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mixed pro and antisaccade performance in children and adults.
    Irving EL; Tajik-Parvinchi DJ; Lillakas L; González EG; Steinbach MJ
    Brain Res; 2009 Feb; 1255():67-74. PubMed ID: 19103183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antisaccade deficit after inactivation of the principal sulcus in monkeys.
    Condy C; Wattiez N; Rivaud-Péchoux S; Tremblay L; Gaymard B
    Cereb Cortex; 2007 Jan; 17(1):221-9. PubMed ID: 16481562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antisaccade performance of schizophrenia patients: evidence of reduced task-set activation and impaired error detection.
    Reuter B; Herzog E; Kathmann N
    J Psychiatr Res; 2006 Mar; 40(2):122-30. PubMed ID: 16459170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decomposing the neural correlates of antisaccade eye movements using event-related FMRI.
    Ettinger U; Ffytche DH; Kumari V; Kathmann N; Reuter B; Zelaya F; Williams SC
    Cereb Cortex; 2008 May; 18(5):1148-59. PubMed ID: 17728263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits.
    Abel LA; Walterfang M; Fietz M; Bowman EA; Velakoulis D
    Neurology; 2009 Mar; 72(12):1083-6. PubMed ID: 19307542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inefficient neural activity in patients with schizophrenia and nonpsychotic relatives of schizophrenic patients: evidence from a working memory task.
    Karch S; Leicht G; Giegling I; Lutz J; Kunz J; Buselmeier M; Hey P; Spörl A; Jäger L; Meindl T; Pogarell O; Möller HJ; Hegerl U; Rujescu D; Mulert C
    J Psychiatr Res; 2009 Oct; 43(15):1185-94. PubMed ID: 19426993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saccade landing point selection and the competition account of pro- and antisaccade generation: the involvement of visual attention--a review.
    Kristjánsson A
    Scand J Psychol; 2007 Apr; 48(2):97-113. PubMed ID: 17430363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fractionating the cognitive control required to bring about a change in task: a dense-sensor event-related potential study.
    Astle DE; Jackson GM; Swainson R
    J Cogn Neurosci; 2008 Feb; 20(2):255-67. PubMed ID: 18275333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Embodiment and psychopathology: a phenomenological perspective.
    Fuchs T; Schlimme JE
    Curr Opin Psychiatry; 2009 Nov; 22(6):570-5. PubMed ID: 19730373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-task crosstalk between saccades and manual responses.
    Huestegge L; Koch I
    J Exp Psychol Hum Percept Perform; 2009 Apr; 35(2):352-62. PubMed ID: 19331493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ERP indices of persisting and current inhibitory control: a study of saccadic task switching.
    Mueller SC; Swainson R; Jackson GM
    Neuroimage; 2009 Mar; 45(1):191-7. PubMed ID: 19100841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of right inferior frontal gyrus during response inhibition across response modalities.
    Chikazoe J; Konishi S; Asari T; Jimura K; Miyashita Y
    J Cogn Neurosci; 2007 Jan; 19(1):69-80. PubMed ID: 17214564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural networks as models of psychopathology.
    Aakerlund L; Hemmingsen R
    Biol Psychiatry; 1998 Apr; 43(7):471-82. PubMed ID: 9547925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal brain dynamics underlying saccade execution, suppression, and error-related feedback.
    Herdman AT; Ryan JD
    J Cogn Neurosci; 2007 Mar; 19(3):420-32. PubMed ID: 17335391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel programming of exogenous and endogenous components in the antisaccade task.
    Massen C
    Q J Exp Psychol A; 2004 Apr; 57(3):475-98. PubMed ID: 15204137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antisaccade Deficits in Schizophrenia Can Be Driven by Attentional Relevance of the Stimuli.
    Bansal S; Gaspar JM; Robinson BM; Leonard CJ; Hahn B; Luck SJ; Gold JM
    Schizophr Bull; 2021 Mar; 47(2):363-372. PubMed ID: 32766726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anxiety, inhibition, efficiency, and effectiveness. An investigation using antisaccade task.
    Derakshan N; Ansari TL; Hansard M; Shoker L; Eysenck MW
    Exp Psychol; 2009; 56(1):48-55. PubMed ID: 19261578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Lack of insight in schizophrenia: a review].
    Raffard S; Bayard S; Capdevielle D; Garcia F; Boulenger JP; Gely-Nargeot MC
    Encephale; 2008 Oct; 34(5):511-6. PubMed ID: 19068341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cognitive task fulfilment may decrease gaze control performances.
    Meyer C; Gauchard GC; Deviterne D; Perrin PP
    Physiol Behav; 2007 Dec; 92(5):861-6. PubMed ID: 17655886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.