BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16805902)

  • 1. A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: evidence for heterochrony in pellicle evolution.
    Esson HJ; Leander BS
    Evol Dev; 2006; 8(4):378-88. PubMed ID: 16805902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of distorted pellicle patterns in rigid photosynthetic euglenids (phacus dujardin).
    Esson HJ; Leander BS
    J Eukaryot Microbiol; 2010; 57(1):19-32. PubMed ID: 19878404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NOVEL PELLICLE SURFACE PATTERNS ON EUGLENA OBTUSA (EUGLENOPHYTA) FROM THE MARINE BENTHIC ENVIRONMENT: IMPLICATIONS FOR PELLICLE DEVELOPMENT AND EVOLUTION(1).
    Esson HJ; Leander BS
    J Phycol; 2008 Feb; 44(1):132-41. PubMed ID: 27041050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida).
    Yamaguchi A; Yubuki N; Leander BS
    BMC Evol Biol; 2012 Mar; 12():29. PubMed ID: 22401606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroevolution of complex cytoskeletal systems in euglenids.
    Leander BS; Esson HJ; Breglia SA
    Bioessays; 2007 Oct; 29(10):987-1000. PubMed ID: 17876783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: Semi-conservative microtubule/strip duplication, strip shaping and transformation.
    Cavalier-Smith T
    Eur J Protistol; 2017 Oct; 61(Pt A):137-179. PubMed ID: 29073503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores.
    Leander BS; Farmer MA
    J Eukaryot Microbiol; 2000; 47(5):469-79. PubMed ID: 11001144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes.
    Yubuki N; Leander BS
    Protoplasma; 2012 Oct; 249(4):859-69. PubMed ID: 22048637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary Origin of Euglena.
    Zakryś B; Milanowski R; Karnkowska A
    Adv Exp Med Biol; 2017; 979():3-17. PubMed ID: 28429314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in the evolution of the euglenid pellicle.
    Leander BS; Witek RP; Farmer MA
    Evolution; 2001 Nov; 55(11):2215-35. PubMed ID: 11794782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure.
    Leander BS; Farmer MA
    J Eukaryot Microbiol; 2001; 48(2):202-17. PubMed ID: 12095109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choanoflagellate lorica construction and assembly: the tectiform condition. Volkanus costatus (=Diplotheca costata).
    Leadbeater BS
    Protist; 2010 Jan; 161(1):160-76. PubMed ID: 19819185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences.
    Breglia SA; Slamovits CH; Leander BS
    J Eukaryot Microbiol; 2007; 54(1):86-92. PubMed ID: 17300525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE ULTRASTRUCTURE OF THE PELLICLE COMPLEX OF EUGLENA GRACILIS.
    SOMMER JR
    J Cell Biol; 1965 Feb; 24(2):253-7. PubMed ID: 14326110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Costal strip production and lorica assembly in the large tectiform choanoflagellate Diaphanoeca grandis Ellis.
    Leadbeater BS; Cheng R
    Eur J Protistol; 2010 May; 46(2):96-110. PubMed ID: 20227255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unifying new model of cytokinesis for the dividing plant and animal cells.
    Dhonukshe P; Samaj J; Baluska F; Friml J
    Bioessays; 2007 Apr; 29(4):371-81. PubMed ID: 17373659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterochrony in limb evolution: developmental mechanisms and natural selection.
    Richardson MK; Gobes SM; van Leeuwen AC; Polman JA; Pieau C; Sánchez-Villagra MR
    J Exp Zool B Mol Dev Evol; 2009 Sep; 312(6):639-64. PubMed ID: 19130597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules.
    Hofmann C; Bouck GB
    J Cell Biol; 1976 Jun; 69(3):693-715. PubMed ID: 818092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometry and spatial patterns in Polysphondylium pallidum.
    McNally JG; Cox EC
    Dev Genet; 1988; 9(4-5):663-72. PubMed ID: 3072135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of strips of centipede grass for sediment load reduction.
    Shiono T; Haraguchi N; Miyamoto K; Shinogi Y; Miyamoto T; Kameyama K
    Water Sci Technol; 2008; 58(12):2347-52. PubMed ID: 19092213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.