BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16806197)

  • 1. The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting.
    Bhushan S; Kuhn C; Berglund AK; Roth C; Glaser E
    FEBS Lett; 2006 Jul; 580(16):3966-72. PubMed ID: 16806197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the determinants for dual targeting of amino acyl-tRNA synthetases to mitochondria and chloroplasts.
    Berglund AK; Pujol C; Duchene AM; Glaser E
    J Mol Biol; 2009 Nov; 393(4):803-14. PubMed ID: 19733576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How can organellar protein N-terminal sequences be dual targeting signals? In silico analysis and mutagenesis approach.
    Pujol C; Maréchal-Drouard L; Duchêne AM
    J Mol Biol; 2007 Jun; 369(2):356-67. PubMed ID: 17433818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena.
    Sláviková S; Vacula R; Fang Z; Ehara T; Osafune T; Schwartzbach SD
    J Cell Sci; 2005 Apr; 118(Pt 8):1651-61. PubMed ID: 15797929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana.
    Ge C; Spånning E; Glaser E; Wieslander A
    Mol Plant; 2014 Jan; 7(1):121-36. PubMed ID: 24214895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis, subcellular localization, expression and evolution of the targeting peptides degrading protease, AtPreP2.
    Bhushan S; Ståhl A; Nilsson S; Lefebvre B; Seki M; Roth C; McWilliam D; Wright SJ; Liberles DA; Shinozaki K; Bruce BD; Boutry M; Glaser E
    Plant Cell Physiol; 2005 Jun; 46(6):985-96. PubMed ID: 15827031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast import signals: the length requirement for translocation in vitro and in vivo.
    Bionda T; Tillmann B; Simm S; Beilstein K; Ruprecht M; Schleiff E
    J Mol Biol; 2010 Sep; 402(3):510-23. PubMed ID: 20688079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco.
    Lee DW; Lee S; Lee GJ; Lee KH; Kim S; Cheong GW; Hwang I
    Plant Physiol; 2006 Feb; 140(2):466-83. PubMed ID: 16384899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastid localization of the PEND protein is mediated by a noncanonical transit peptide.
    Terasawa K; Sato N
    FEBS J; 2009 Mar; 276(6):1709-19. PubMed ID: 19220850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different.
    Ståhl A; Nilsson S; Lundberg P; Bhushan S; Biverståhl H; Moberg P; Morisset M; Vener A; Mäler L; Langel U; Glaser E
    J Mol Biol; 2005 Jun; 349(4):847-60. PubMed ID: 15893767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo protein import into plant mitochondria.
    Pavlov PF; Rudhe C; Bhushan S; Glaser E
    Methods Mol Biol; 2007; 372():297-314. PubMed ID: 18314735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial and chloroplastic targeting signals of NADP+-dependent isocitrate dehydrogenase.
    McKinnon DJ; Brzezowski P; Wilson KE; Gray GR
    Biochem Cell Biol; 2009 Dec; 87(6):963-74. PubMed ID: 19935882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species.
    Gnanasambandam A; Polkinghorne IG; Birch RG
    Plant Biotechnol J; 2007 Mar; 5(2):290-6. PubMed ID: 17309684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental determination of organelle targeting-peptide cleavage sites using transient expression of green fluorescent protein translational fusions.
    Candat A; Poupart P; Andrieu JP; Chevrollier A; Reynier P; Rogniaux H; Avelange-Macherel MH; Macherel D
    Anal Biochem; 2013 Mar; 434(1):44-51. PubMed ID: 23146587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domains of a transit sequence required for in vivo import in Arabidopsis chloroplasts.
    Rensink WA; Pilon M; Weisbeek P
    Plant Physiol; 1998 Oct; 118(2):691-9. PubMed ID: 9765555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Mechanism of the Specificity of Protein Import into Chloroplasts and Mitochondria in Plant Cells.
    Lee DW; Lee S; Lee J; Woo S; Razzak MA; Vitale A; Hwang I
    Mol Plant; 2019 Jul; 12(7):951-966. PubMed ID: 30890495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo methods to study protein import into plant mitochondria.
    Bhushan S; Pavlov PF; Rudhe C; Glaser E
    Methods Mol Biol; 2007; 390():131-50. PubMed ID: 17951685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shredding the signal: targeting peptide degradation in mitochondria and chloroplasts.
    Kmiec B; Teixeira PF; Glaser E
    Trends Plant Sci; 2014 Dec; 19(12):771-8. PubMed ID: 25305111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response.
    Myouga F; Motohashi R; Kuromori T; Nagata N; Shinozaki K
    Plant J; 2006 Oct; 48(2):249-60. PubMed ID: 16995899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel serine/proline-rich domain in combination with a transmembrane domain is required for the insertion of AtTic40 into the inner envelope membrane of chloroplasts.
    Tripp J; Inoue K; Keegstra K; Froehlich JE
    Plant J; 2007 Dec; 52(5):824-38. PubMed ID: 17883373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.