These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 16806377)
1. Parallel numerical simulation of the ultrasonic waves in a prestressed formation. Chen H; Wang X; Lin W Ultrasonics; 2006 Dec; 44 Suppl 1():e1013-7. PubMed ID: 16806377 [TBL] [Abstract][Full Text] [Related]
2. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition. Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394 [TBL] [Abstract][Full Text] [Related]
3. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. Guan W; Hu H; He X J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370 [TBL] [Abstract][Full Text] [Related]
4. Convolutional perfectly matched layer for elastic second-order wave equation. Li Y; Bou Matar O J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831 [TBL] [Abstract][Full Text] [Related]
5. Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations. Laakso I; Ilvonen S; Uusitupa T Phys Med Biol; 2007 Dec; 52(23):7183-92. PubMed ID: 18030001 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulation and visualization of elastic waves using mass-spring lattice model. Yim H; Sohn Y IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):549-58. PubMed ID: 18238581 [TBL] [Abstract][Full Text] [Related]
7. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers. Sheu YL; Li PC J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776 [TBL] [Abstract][Full Text] [Related]
8. Variations in calculated SAR with distance to the perfectly matched layer boundary for a human voxel model. Findlay RP; Dimbylow PJ Phys Med Biol; 2006 Dec; 51(23):N411-5. PubMed ID: 17110758 [TBL] [Abstract][Full Text] [Related]
9. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface. Sun W; Pan H; Videen G Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669 [TBL] [Abstract][Full Text] [Related]
10. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method. Sheu YL; Li PC IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928 [TBL] [Abstract][Full Text] [Related]
11. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere. de Groot-Hedlin C J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635 [TBL] [Abstract][Full Text] [Related]
12. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain. Bin J; Yousuff Hussaini M; Lee S J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844 [TBL] [Abstract][Full Text] [Related]
13. Wave equation-based imaging of mode converted waves in ultrasonic NDI, with suppressed leakage from nonmode converted waves. Portzgen N; Gisolf D; Verschuur DJ IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1768-80. PubMed ID: 18986920 [TBL] [Abstract][Full Text] [Related]
14. Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Sun W; Fu Q; Chen Z Appl Opt; 1999 May; 38(15):3141-51. PubMed ID: 18319902 [TBL] [Abstract][Full Text] [Related]
15. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach. Guo LX; Li J; Zeng H J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2383-92. PubMed ID: 19884936 [TBL] [Abstract][Full Text] [Related]
16. Finite difference time domain methods for piezoelectric crystals. Chagla F; Smith PM IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1895-901. PubMed ID: 17036798 [TBL] [Abstract][Full Text] [Related]
17. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media. Liu QH IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259 [TBL] [Abstract][Full Text] [Related]
18. A parametric study of ultrasonic beam profiles for a linear phased array transducer. Lee JH; Choi SW IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):644-50. PubMed ID: 18238592 [TBL] [Abstract][Full Text] [Related]
19. Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL. Molero M; IturrarĂ¡n-Viveros U Ultrasonics; 2013 Mar; 53(3):815-22. PubMed ID: 23290584 [TBL] [Abstract][Full Text] [Related]
20. A perfectly matched layer applied to a reactive scattering problem. Nissen A; Karlsson HO; Kreiss G J Chem Phys; 2010 Aug; 133(5):054306. PubMed ID: 20707531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]