These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
553 related articles for article (PubMed ID: 16806456)
21. FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Zieris A; Prokoph S; Levental KR; Welzel PB; Grimmer M; Freudenberg U; Werner C Biomaterials; 2010 Nov; 31(31):7985-94. PubMed ID: 20674970 [TBL] [Abstract][Full Text] [Related]
22. Neovascularization by bFGF releasing hyaluronic acid-gelatin microspheres: in vitro and in vivo studies. Demirdögen B; Elçin AE; Elçin YM Growth Factors; 2010 Dec; 28(6):426-36. PubMed ID: 20854186 [TBL] [Abstract][Full Text] [Related]
23. Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres. Layman H; Li X; Nagar E; Vial X; Pham SM; Andreopoulos FM J Biomater Sci Polym Ed; 2012; 23(1-4):185-206. PubMed ID: 21192837 [TBL] [Abstract][Full Text] [Related]
24. Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels. Zieris A; Chwalek K; Prokoph S; Levental KR; Welzel PB; Freudenberg U; Werner C J Control Release; 2011 Nov; 156(1):28-36. PubMed ID: 21763368 [TBL] [Abstract][Full Text] [Related]
25. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Hosseinkhani H; Hosseinkhani M; Khademhosseini A; Kobayashi H; Tabata Y Biomaterials; 2006 Dec; 27(34):5836-44. PubMed ID: 16930687 [TBL] [Abstract][Full Text] [Related]
26. Growth factor delivery from hydrogel particle aggregates to promote tubular regeneration after acute kidney injury. Tsurkan MV; Hauser PV; Zieris A; Carvalhosa R; Bussolati B; Freudenberg U; Camussi G; Werner C J Control Release; 2013 May; 167(3):248-55. PubMed ID: 23395667 [TBL] [Abstract][Full Text] [Related]
27. A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors. Briganti E; Spiller D; Mirtelli C; Kull S; Counoupas C; Losi P; Senesi S; Di Stefano R; Soldani G J Control Release; 2010 Feb; 142(1):14-21. PubMed ID: 19811766 [TBL] [Abstract][Full Text] [Related]
28. Coadministration of adipose-derived stem cells and control-released basic fibroblast growth factor facilitates angiogenesis in a murine ischemic hind limb model. Horikoshi-Ishihara H; Tobita M; Tajima S; Tanaka R; Oshita T; Tabata Y; Mizuno H J Vasc Surg; 2016 Dec; 64(6):1825-1834.e1. PubMed ID: 26597457 [TBL] [Abstract][Full Text] [Related]
29. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Andreopoulos FM; Persaud I Biomaterials; 2006 Apr; 27(11):2468-76. PubMed ID: 16321436 [TBL] [Abstract][Full Text] [Related]
30. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Nillesen ST; Geutjes PJ; Wismans R; Schalkwijk J; Daamen WF; van Kuppevelt TH Biomaterials; 2007 Feb; 28(6):1123-31. PubMed ID: 17113636 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of angiogenic activities of hyaluronan oligosaccharides of defined minimum size. Cui X; Xu H; Zhou S; Zhao T; Liu A; Guo X; Tang W; Wang F Life Sci; 2009 Oct; 85(15-16):573-7. PubMed ID: 19720068 [TBL] [Abstract][Full Text] [Related]
32. Delivery of basic fibroblast growth factor using heparin-conjugated fibrin for therapeutic angiogenesis. Yang HS; Bhang SH; Hwang JW; Kim DI; Kim BS Tissue Eng Part A; 2010 Jun; 16(6):2113-9. PubMed ID: 20136400 [TBL] [Abstract][Full Text] [Related]
33. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Tabata Y; Ikada Y Biomaterials; 1999 Nov; 20(22):2169-75. PubMed ID: 10555085 [TBL] [Abstract][Full Text] [Related]
34. Development of functional fibrous matrices for the controlled release of basic fibroblast growth factor to improve therapeutic angiogenesis. Kim MS; Bhang SH; Yang HS; Rim NG; Jun I; Kim SI; Kim BS; Shin H Tissue Eng Part A; 2010 Oct; 16(10):2999-3010. PubMed ID: 20486788 [TBL] [Abstract][Full Text] [Related]
35. Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Oliviero O; Ventre M; Netti PA Acta Biomater; 2012 Sep; 8(9):3294-301. PubMed ID: 22641106 [TBL] [Abstract][Full Text] [Related]
36. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Liu G; Wu R; Yang B; Shi Y; Deng C; Atala A; Mou S; Criswell T; Zhang Y Acta Biomater; 2020 Apr; 107():50-64. PubMed ID: 32044457 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. Shu XZ; Ahmad S; Liu Y; Prestwich GD J Biomed Mater Res A; 2006 Dec; 79(4):902-12. PubMed ID: 16941590 [TBL] [Abstract][Full Text] [Related]
39. Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro. Downs EC; Robertson NE; Riss TL; Plunkett ML J Cell Physiol; 1992 Aug; 152(2):422-9. PubMed ID: 1379248 [TBL] [Abstract][Full Text] [Related]