These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 16806660)

  • 41. UVQ: a tool for assessing the water and contaminant balance impacts of urban development scenarios.
    Mitchell VG; Diaper C
    Water Sci Technol; 2005; 52(12):91-8. PubMed ID: 16477975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network.
    Cinar O; Hasar H; Kinaci C
    J Biotechnol; 2006 May; 123(2):204-9. PubMed ID: 16337301
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Technical-economical evaluation of the operation of oxidation ditches.
    Ghermandi A; Bixio D; Thoeye C; De Gueldre G
    Water Sci Technol; 2005; 52(12):133-9. PubMed ID: 16477980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Backfilling missing microbial concentrations in a riverine database using artificial neural networks.
    Chandramouli V; Brion G; Neelakantan TR; Lingireddy S
    Water Res; 2007 Jan; 41(1):217-27. PubMed ID: 17070890
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Herbal pharmaceutical wastewater treatment by a pilot scale upflow anaerobic sludge blanket (UASB) reactor.
    Satyanarayan S; Karambe A; Vanerkar AP
    Water Sci Technol; 2009; 59(11):2265-72. PubMed ID: 19494467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving the efficiency of a wastewater treatment plant by fuzzy control and neural network.
    Bongards M
    Water Sci Technol; 2001; 43(11):189-96. PubMed ID: 11443962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.
    Yong M; Yongzhen P; Shuying W
    Bioprocess Biosyst Eng; 2005 Jul; 27(4):223-8. PubMed ID: 15900439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant.
    Woo SH; Jeon CO; Yun YS; Choi H; Lee CS; Lee DS
    J Hazard Mater; 2009 Jan; 161(1):538-44. PubMed ID: 18486333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Treatment of dairy wastewater by water hyacinth.
    Munavalli GR; Saler PS
    Water Sci Technol; 2009; 59(4):713-22. PubMed ID: 19237765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic optimisation of WWTP inflow to reduce total emission.
    Tränckner J; Franz T; Seggelke K; Krebs P
    Water Sci Technol; 2007; 56(10):11-8. PubMed ID: 18048972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms.
    Béraud B; Steyer JP; Lemoine C; Latrille E; Manic G; Printemps-Vacquier C
    Water Sci Technol; 2007; 56(9):109-16. PubMed ID: 18025738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN).
    Delnavaz M; Ayati B; Ganjidoust H
    J Hazard Mater; 2010 Jul; 179(1-3):769-75. PubMed ID: 20399558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A hybrid artificial neural network-numerical model for ground water problems.
    Szidarovszky F; Coppola EA; Long J; Hall AD; Poulton MM
    Ground Water; 2007; 45(5):590-600. PubMed ID: 17760585
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On-line microwave total solids sensoring in sewage characterization.
    Poutiainen H; Laitinen S; Juntunen P; Heinonen-Tanski H
    Water Sci Technol; 2009; 59(7):1291-7. PubMed ID: 19380993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An alternate oxic-anoxic process automatically controlled. Theory and practice in a real treatment plant network.
    Battistoni P; Boccadoro R; Bolzonella D; Marinelli M
    Water Sci Technol; 2003; 48(11-12):337-44. PubMed ID: 14753554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of short-term water demand prediction model to Seoul.
    Joo CN; Koo JY; Yu MJ
    Water Sci Technol; 2002; 46(6-7):255-61. PubMed ID: 12380999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty.
    Flores-Alsina X; Rodríguez-Roda I; Sin G; Gernaey KV
    Water Res; 2008 Nov; 42(17):4485-97. PubMed ID: 18804255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemically enhanced primary treatment (CEPT) for removal of carbon and nutrients from municipal wastewater treatment plants: a case study of Shanghai.
    Wang H; Li F; Keller AA; Xu R
    Water Sci Technol; 2009; 60(7):1803-9. PubMed ID: 19809143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potentials of real time control, stormwater infiltration and urine separation to minimize river impacts: dynamic long term simulation of sewer network, pumping stations, pressure pipes and waste water treatment plant.
    Peters C; Keller S; Sieker H; Jekel M
    Water Sci Technol; 2007; 56(10):1-10. PubMed ID: 18048971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.