BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 16806987)

  • 1. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement.
    Kida T; Wasaka T; Inui K; Akatsuka K; Nakata H; Kakigi R
    Neuroimage; 2006 Sep; 32(3):1355-64. PubMed ID: 16806987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach.
    Cheyne D; Bakhtazad L; Gaetz W
    Hum Brain Mapp; 2006 Mar; 27(3):213-29. PubMed ID: 16037985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-trial neuromagnetic analysis reveals somatosensory dysfunction in chronic Minamata disease.
    Nakamura M; Taulu S; Tachimori H; Tomo Y; Kawashima T; Miura Y; Itatani M; Tobimatsu S
    Neuroimage Clin; 2023; 38():103422. PubMed ID: 37163912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation.
    Takeuchi M; Hori E; Takamoto K; Tran AH; Satoru K; Ishikawa A; Ono T; Endo S; Nishijo H
    Brain Topogr; 2009 Nov; 22(3):197-214. PubMed ID: 19705276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative hand movements: task-dependent modulation of ipsi- and contralateral cortical control.
    Schrafl-Altermatt M; Easthope CS
    Physiol Rep; 2018 May; 6(10):e13581. PubMed ID: 29845769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of body position on cortical pain-related somatosensory processing: an ERP study.
    Spironelli C; Angrilli A
    PLoS One; 2011; 6(9):e24932. PubMed ID: 21949794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-precision voluntary movements are largely independent of preceding vertex potentials elicited by sudden sensory events.
    Kilintari M; Bufacchi RJ; Novembre G; Guo Y; Haggard P; Iannetti GD
    J Physiol; 2018 Aug; 596(16):3655-3673. PubMed ID: 29726629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticipatory cerebellar responses during somatosensory omission in man.
    Tesche CD; Karhu JJ
    Hum Brain Mapp; 2000 Mar; 9(3):119-42. PubMed ID: 10739364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional reorganization and stability of somatosensory-motor cortical topography in a tetraplegic subject with late recovery.
    Corbetta M; Burton H; Sinclair RJ; Conturo TE; Akbudak E; McDonald JW
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17066-71. PubMed ID: 12477938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study.
    Jones SR; Pritchett DL; Stufflebeam SM; Hämäläinen M; Moore CI
    J Neurosci; 2007 Oct; 27(40):10751-64. PubMed ID: 17913909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gating Patterns to Proprioceptive Stimulation in Various Cortical Areas: An MEG Study in Children and Adults using Spatial ICA.
    Vallinoja J; Jaatela J; Nurmi T; Piitulainen H
    Cereb Cortex; 2021 Feb; 31(3):1523-1537. PubMed ID: 33140082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoencephalography reveals impaired sensory gating and change detection in older adults in the somatosensory system.
    Pesonen H; Strömmer J; Li X; Parkkari J; Tarkka IM; Astikainen P
    Neuropsychologia; 2023 Nov; 190():108702. PubMed ID: 37838067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gating of sensory input at spinal and cortical levels during preparation and execution of voluntary movement.
    Seki K; Fetz EE
    J Neurosci; 2012 Jan; 32(3):890-902. PubMed ID: 22262887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of somatosensory signal transmission in the primate cuneate nucleus during voluntary hand movement.
    Kubota S; Sasaki C; Kikuta S; Yoshida J; Ito S; Gomi H; Oya T; Seki K
    Cell Rep; 2024 Mar; 43(3):113884. PubMed ID: 38458194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action execution and action observation elicit mirror responses with the same temporal profile in human SII.
    Del Vecchio M; Caruana F; Sartori I; Pelliccia V; Zauli FM; Lo Russo G; Rizzolatti G; Avanzini P
    Commun Biol; 2020 Feb; 3(1):80. PubMed ID: 32080326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for reducing the effect of tonic muscle activity on the gamma band of the scalp EEG.
    Nottage JF; Morrison PD; Williams SC; Ffytche DH
    Brain Topogr; 2013 Jan; 26(1):50-61. PubMed ID: 22965826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actor's and observer's primary motor cortices stabilize similarly after seen or heard motor actions.
    Caetano G; Jousmäki V; Hari R
    Proc Natl Acad Sci U S A; 2007 May; 104(21):9058-62. PubMed ID: 17470782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OPM-MEG Measuring Phase Synchronization on Source Time Series: Application in Rhythmic Median Nerve Stimulation.
    Ma YY; Gao Y; Wu HQ; Liang XY; Li Y; Lu H; Liu CZ; Ning XL
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1426-1434. PubMed ID: 38530717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of attention to pain by goal-directed action: a somatosensory evoked potentials approach.
    Pinto EA; Van Damme S; Torta DM; Meulders A
    PeerJ; 2023; 11():e16544. PubMed ID: 38144185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somatosensory processing of the tongue in humans.
    Sakamoto K; Nakata H; Yumoto M; Kakigi R
    Front Physiol; 2010; 1():136. PubMed ID: 21423377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.