These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16807329)

  • 1. Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum.
    Rancillac A; Rossier J; Guille M; Tong XK; Geoffroy H; Amatore C; Arbault S; Hamel E; Cauli B
    J Neurosci; 2006 Jun; 26(26):6997-7006. PubMed ID: 16807329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways.
    Cauli B; Tong XK; Rancillac A; Serluca N; Lambolez B; Rossier J; Hamel E
    J Neurosci; 2004 Oct; 24(41):8940-9. PubMed ID: 15483113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cerebral microvessels by glutamatergic mechanisms.
    Fergus A; Lee KS
    Brain Res; 1997 Apr; 754(1-2):35-45. PubMed ID: 9134957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels.
    Lovick TA; Brown LA; Key BJ
    Neuroscience; 1999; 92(1):47-60. PubMed ID: 10392829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System.
    Mapelli L; Gagliano G; Soda T; Laforenza U; Moccia F; D'Angelo EU
    J Neurosci; 2017 Feb; 37(5):1340-1351. PubMed ID: 28039371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats.
    Yang G; Chen G; Ebner TJ; Iadecola C
    Am J Physiol; 1999 Dec; 277(6):R1760-70. PubMed ID: 10600924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer.
    Yang G; Huard JM; Beitz AJ; Ross ME; Iadecola C
    J Neurosci; 2000 Sep; 20(18):6968-73. PubMed ID: 10995841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential sensitivity of excitatory and inhibitory synaptic transmission to modulation by nitric oxide in rat nucleus tractus solitarii.
    Wang S; Paton JF; Kasparov S
    Exp Physiol; 2007 Mar; 92(2):371-82. PubMed ID: 17138620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of nitric oxide action on inhibitory GABAergic signaling within the nucleus tractus solitarii.
    Wang S; Teschemacher AG; Paton JF; Kasparov S
    FASEB J; 2006 Jul; 20(9):1537-9. PubMed ID: 16720728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal.
    Shin JH; Linden DJ
    J Neurophysiol; 2005 Dec; 94(6):4281-9. PubMed ID: 16120658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of 20-HETE to vasodilator actions of nitric oxide in the cerebral microcirculation.
    Alonso-Galicia M; Hudetz AG; Shen H; Harder DR; Roman RJ
    Stroke; 1999 Dec; 30(12):2727-34; discussion 2734. PubMed ID: 10583004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAergic regulation of cerebral microvascular tone in the rat.
    Fergus A; Lee KS
    J Cereb Blood Flow Metab; 1997 Sep; 17(9):992-1003. PubMed ID: 9307613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices.
    Zheng S; Zuo Z
    Brain Res; 2005 Aug; 1054(2):143-51. PubMed ID: 16081051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.
    Glitsch M
    J Neurophysiol; 2006 Jul; 96(1):86-96. PubMed ID: 16611839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicular GABA release delays the onset of the Purkinje cell terminal depolarization without affecting tissue swelling in cerebellar slices during simulated ischemia.
    Brady JD; Mohr C; Rossi DJ
    Neuroscience; 2010 Jun; 168(1):108-17. PubMed ID: 20226232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) of responses to nitric oxide-donors in rat pulmonary artery: influence of the mechanism of nitric oxide generation.
    Homer KL; Fiore SA; Wanstall JC
    J Pharm Pharmacol; 1999 Feb; 51(2):135-9. PubMed ID: 10217311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cerebrovascular response to elevated potassium--role of nitric oxide in the in vitro model of isolated rat middle cerebral arteries.
    Schuh-Hofer S; Lobsien E; Brodowsky R; Vogt J; Dreier JP; Klee R; Dirnagl U; Lindauer U
    Neurosci Lett; 2001 Jun; 306(1-2):61-4. PubMed ID: 11403958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of arginine, glutamate and glutamine in the hippocampus of freely moving rats: Involvement of nitric oxide.
    Watts J; Fowler L; Whitton PS; Pearce B
    Brain Res Bull; 2005 May; 65(6):521-8. PubMed ID: 15862924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of nitric oxide, cyclic GMP and phosphodiesterase 5 in excitatory amino acid and GABA release in the nucleus accumbens evoked by activation of the hippocampal fimbria.
    Kraus MM; Prast H
    Neuroscience; 2002; 112(2):331-43. PubMed ID: 12044451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor sub-types involved in responses of Purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat.
    Hussain S; Gardner CR; Bagust J; Walker RJ
    Neuropharmacology; 1991 Oct; 30(10):1029-37. PubMed ID: 1684644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.