These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 168075)
1. Gylcerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue. Houstĕk J; Cannon B; Lindberg O Eur J Biochem; 1975 May; 54(1):11-8. PubMed ID: 168075 [TBL] [Abstract][Full Text] [Related]
2. Control of sn-glycerol 3-phosphate oxidation in brown adipose tissue mitochondria by calcium and acyl-CoA. Bukowiecki LJ; Lindberg O Biochim Biophys Acta; 1974 Apr; 348(1):115-25. PubMed ID: 4210023 [No Abstract] [Full Text] [Related]
3. Dual role of free fatty acids in regulation of mitochondrial L-glycerol-3-phosphate dehydrogenase. Rauchová H; Beleznai Z; Drahota Z Biochem Mol Biol Int; 1993 May; 30(1):139-48. PubMed ID: 8358326 [TBL] [Abstract][Full Text] [Related]
4. Coenzyme Q-pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. Rauchová H; Battino M; Fato R; Lenaz G; Drahota Z J Bioenerg Biomembr; 1992 Apr; 24(2):235-41. PubMed ID: 1326518 [TBL] [Abstract][Full Text] [Related]
5. Oxidative metabolism in cells isolated from brown adipose tissue. 1. Catecholamine and fatty acid stimulation of respiration. Prusiner SB; Cannon B; Lindberg O Eur J Biochem; 1968 Oct; 6(1):15-22. PubMed ID: 5725810 [No Abstract] [Full Text] [Related]
6. Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria. Rauchová H; Fato R; Drahota Z; Lenaz G Arch Biochem Biophys; 1997 Aug; 344(1):235-41. PubMed ID: 9244403 [TBL] [Abstract][Full Text] [Related]
7. The relative utilization of the acyl dihydroxyacetone phosphate and glycerol phosphate pathways for synthesis of glycerolipids in various tumors and normal tissues. Pollock RJ; Hajra AK; Agranoff BW Biochim Biophys Acta; 1975 Mar; 380(3):421-35. PubMed ID: 1138875 [TBL] [Abstract][Full Text] [Related]
8. The regulation of glycerol 3-phosphate oxidase of rate brownadipose tissue mitochondria by long-chain free fatty acids. Houstĕk J; Drahota Z Mol Cell Biochem; 1975 Apr; 7(1):45-50. PubMed ID: 166298 [TBL] [Abstract][Full Text] [Related]
9. Metabolic relationships between lipolysis and respiration in rat brown adipocytes. The role of long chain fatty acids as regulators of mitochondrial respiration and feedback inhibitors of lipolysis. Bukowiecki LJ; Folléa N; Lupien J; Paradis A J Biol Chem; 1981 Dec; 256(24):12840-8. PubMed ID: 6273408 [TBL] [Abstract][Full Text] [Related]
10. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng L; Bremer J; Davis EJ J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472 [TBL] [Abstract][Full Text] [Related]
11. The effect of phospholipase A2 on mitochondrial glycerol-3-phosphate oxidation. Rauchová H; Kalous M; Drahota Z Physiol Res; 1993; 42(5):319-22. PubMed ID: 8130177 [TBL] [Abstract][Full Text] [Related]
12. Regulation of glycerol 3-phosphate oxidation in mitochondria by changes in membrane microviscosity. Amler E; Rauchová H; Svobodová J; Drahota Z FEBS Lett; 1986 Sep; 206(1):1-3. PubMed ID: 3758342 [TBL] [Abstract][Full Text] [Related]
13. Effect of chemical modification in situ on L-glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria. Rauchová H; Beleznai Z; Drahota Z J Bioenerg Biomembr; 1988 Oct; 20(5):623-32. PubMed ID: 3215904 [TBL] [Abstract][Full Text] [Related]
14. The presence of rotenone-sensitive NADH dehydrogenase in the long slender bloodstream and the procyclic forms of Trypanosoma brucei brucei. Beattie DS; Howton MM Eur J Biochem; 1996 Nov; 241(3):888-94. PubMed ID: 8944779 [TBL] [Abstract][Full Text] [Related]
15. Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. Påhlman IL; Larsson C; Averét N; Bunoust O; Boubekeur S; Gustafsson L; Rigoulet M J Biol Chem; 2002 Aug; 277(31):27991-5. PubMed ID: 12032156 [TBL] [Abstract][Full Text] [Related]
16. The Importance of Calcium Ions for Determining Mitochondrial Glycerol-3-Phosphate Dehydrogenase Activity When Measuring Uncoupling Protein 1 (UCP1) Function in Mitochondria Isolated from Brown Adipose Tissue. Clarke KJ; Porter RK Methods Mol Biol; 2018; 1782():325-336. PubMed ID: 29851009 [TBL] [Abstract][Full Text] [Related]
17. Coenzyme Q releases the inhibitory effect of free fatty acids on mitochondrial glycerophosphate dehydrogenase. Rauchová H; Drahota Z; Rauch P; Fato R; Lenaz G Acta Biochim Pol; 2003; 50(2):405-13. PubMed ID: 12833166 [TBL] [Abstract][Full Text] [Related]
18. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Rigoulet M; Aguilaniu H; Avéret N; Bunoust O; Camougrand N; Grandier-Vazeille X; Larsson C; Pahlman IL; Manon S; Gustafsson L Mol Cell Biochem; 2004; 256-257(1-2):73-81. PubMed ID: 14977171 [TBL] [Abstract][Full Text] [Related]
19. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm. Martin BR; Denton RM Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782 [TBL] [Abstract][Full Text] [Related]
20. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Shen W; Wei Y; Dauk M; Tan Y; Taylor DC; Selvaraj G; Zou J Plant Cell; 2006 Feb; 18(2):422-41. PubMed ID: 16415206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]