These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 168075)

  • 21. The physiological role of pyruvate carboxylation in hamster brown adipose tissue.
    Cannon B; Nedergaard J
    Eur J Biochem; 1979 Mar; 94(2):419-26. PubMed ID: 428395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of metabolism in brown adipose tissue.
    Williamson JR; Prusiner S; Olson MS; Fukami M
    Lipids; 1970 Jan; 5(1):1-14. PubMed ID: 5418206
    [No Abstract]   [Full Text] [Related]  

  • 23. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
    Vrbacký M; Drahota Z; Mrácek T; Vojtísková A; Jesina P; Stopka P; Houstek J
    Biochim Biophys Acta; 2007 Jul; 1767(7):989-97. PubMed ID: 17560536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria.
    Alexson SE; Nedergaard J
    J Biol Chem; 1988 Sep; 263(27):13564-71. PubMed ID: 2901416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of energy metabolism in hamster brown adipose tissue.
    Williamson JR
    J Biol Chem; 1970 Apr; 245(8):2043-50. PubMed ID: 4191717
    [No Abstract]   [Full Text] [Related]  

  • 26. Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Arch Biochem Biophys; 2000 Dec; 384(1):143-53. PubMed ID: 11147825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brown adipose tissue mitochondria: recoupling caused by substrate level phosphorylation and extramitochondrial adenosine phosphates.
    Rafael J; Wrabetz E
    Eur J Biochem; 1976 Jan; 61(2):551-61. PubMed ID: 174912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flavoprotein-linked substrate oxidation in preparations of hamster brown adipocytes. A discrimination between internally and externally oxidized substrates.
    Bernson VS; Lundberg P; Pettersson B
    Biochim Biophys Acta; 1979 Oct; 587(3):353-61. PubMed ID: 549646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of mitochondrial glycerol-3-phosphate dehydrogenase by α-tocopheryl succinate.
    Rauchová H; Vokurková M; Drahota Z
    Int J Biochem Cell Biol; 2014 Aug; 53():409-13. PubMed ID: 24953557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycerol 3-phosphate dehydrogenase of boar spermatozoa: inhibition by alpha-bromohydrin phosphate.
    Jones AR; Gillan L
    J Reprod Fertil; 1996 Sep; 108(1):95-100. PubMed ID: 8958834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue.
    Saggerson ED; Greenbaum AL
    Biochem J; 1970 Sep; 119(2):193-219. PubMed ID: 4395181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy dissipation in brown fat.
    Cannon B; Nedergaard J
    Experientia Suppl; 1978; 32():107-11. PubMed ID: 274302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Norepinephrine-stimulated fatty-acid release and oxygen consumption in isolated hamster brown-fat cells. Influence of buffers, albumin, insulin and mitochondrial inhibitors.
    Nedergaard J; Lindberg O
    Eur J Biochem; 1979 Mar; 95(1):139-45. PubMed ID: 456345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae.
    Bunoust O; Devin A; Avéret N; Camougrand N; Rigoulet M
    J Biol Chem; 2005 Feb; 280(5):3407-13. PubMed ID: 15557339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamate neurotoxicity in rat cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment.
    Atlante A; Gagliardi S; Marra E; Calissano P; Passarella S
    J Neurochem; 1999 Jul; 73(1):237-46. PubMed ID: 10386976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The glycerol phosphate, dihydroxyacetone phosphate and monoacylglycerol pathways of glycerolipid synthesis in rat adipose-tissue homogenates.
    Dodds PF; Gurr MI; Brindley DN
    Biochem J; 1976 Dec; 160(3):693-700. PubMed ID: 1016248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants.
    Shen W; Wei Y; Dauk M; Zheng Z; Zou J
    FEBS Lett; 2003 Feb; 536(1-3):92-6. PubMed ID: 12586344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Succinate oxidation in hamster brown adipocytes.
    Pettersson B; Lundberg P; Bernson VS
    Experientia Suppl; 1978; 32():101-5. PubMed ID: 274301
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.