These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16807541)

  • 1. Contribution of adenosine receptors in the control of arteriolar tone and adenosine-angiotensin II interaction.
    Lai EY; Patzak A; Steege A; Mrowka R; Brown R; Spielmann N; Persson PB; Fredholm BB; Persson AE
    Kidney Int; 2006 Aug; 70(4):690-8. PubMed ID: 16807541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II enhances the afferent arteriolar response to adenosine through increases in cytosolic calcium.
    Lai EY; Patzak A; Persson AE; Carlström M
    Acta Physiol (Oxf); 2009 Aug; 196(4):435-45. PubMed ID: 19141138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine A2 receptor activation attenuates afferent arteriolar autoregulation during adenosine receptor saturation in rats.
    Feng MG; Navar LG
    Hypertension; 2007 Oct; 50(4):744-9. PubMed ID: 17664389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine A2A receptor modulation of juvenile female rat skeletal muscle microvessel permeability.
    Wang J; Huxley VH
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H3094-105. PubMed ID: 16815983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine A1 receptor-dependent and independent pathways in modulating renal vascular responses to angiotensin II.
    Gao X; Peleli M; Zollbrecht C; Patzak A; Persson AE; Carlström M
    Acta Physiol (Oxf); 2015 Jan; 213(1):268-76. PubMed ID: 25251152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine A(2) receptors modulate tubuloglomerular feedback.
    Carlström M; Wilcox CS; Welch WJ
    Am J Physiol Renal Physiol; 2010 Aug; 299(2):F412-7. PubMed ID: 20519378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles.
    Patzak A; Lai EY; Fähling M; Sendeski M; Martinka P; Persson PB; Persson AE
    Am J Physiol Regul Integr Comp Physiol; 2007 Dec; 293(6):R2232-42. PubMed ID: 17898122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation.
    Feng MG; Navar LG
    Am J Physiol Renal Physiol; 2010 Aug; 299(2):F310-5. PubMed ID: 20462966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constrictor and dilator effects of angiotensin II on cerebral arterioles.
    Vincent JM; Kwan YW; Chan SL; Perrin-Sarrado C; Atkinson J; Chillon JM
    Stroke; 2005 Dec; 36(12):2691-5. PubMed ID: 16269635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of intraspinal adenosine A1 receptors in sympathetic regulation.
    Peng SC; Ho CM; Ho ST; Tsai SK; Su CK
    Eur J Pharmacol; 2004 May; 492(1):49-55. PubMed ID: 15145705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interaction between purinergic system and opioid withdrawal: in vitro evidence.
    Capasso A; Gallo C
    Curr Drug Saf; 2009 May; 4(2):97-102. PubMed ID: 19442100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blunted tubuloglomerular feedback by absence of angiotensin type 1A receptor involves neuronal NOS.
    Ichihara A; Hayashi M; Koura Y; Tada Y; Sugaya T; Hirota N; Saruta T
    Hypertension; 2002 Dec; 40(6):934-9. PubMed ID: 12468582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine increases calcium sensitivity via receptor-independent activation of the p38/MK2 pathway in mesenteric arteries.
    Martinka P; Lai EY; Fähling M; Jankowski V; Jankowski J; Schubert R; Gaestel M; Persson AE; Persson PB; Patzak A
    Acta Physiol (Oxf); 2008 May; 193(1):37-46. PubMed ID: 18005245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II sensitivity of afferent glomerular arterioles in endothelin-1 transgenic mice.
    Patzak A; Bontscho J; Lai E; Kupsch E; Skalweit A; Richter CM; Zimmermann M; Thöne-Reineke C; Joehren O; Godes M; Steege A; Hocher B
    Nephrol Dial Transplant; 2005 Dec; 20(12):2681-9. PubMed ID: 16188896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleoside-induced arteriolar constriction: a mast cell-dependent response.
    Doyle MP; Linden J; Duling BR
    Am J Physiol; 1994 May; 266(5 Pt 2):H2042-50. PubMed ID: 8203602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between adenosine and angiotensin II in controlling glomerular filtration.
    Hall JE; Granger JP; Hester RL
    Am J Physiol; 1985 Mar; 248(3 Pt 2):F340-6. PubMed ID: 3883810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats.
    Zeraati M; Mirnajafi-Zadeh J; Fathollahi Y; Namvar S; Rezvani ME
    Seizure; 2006 Jan; 15(1):41-8. PubMed ID: 16337818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin II enhances tubuloglomerular feedback via luminal AT(1) receptors on the macula densa.
    Wang H; Garvin JL; Carretero OA
    Kidney Int; 2001 Nov; 60(5):1851-7. PubMed ID: 11703603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal arteriolar angiotensin responses during varied adenosine receptor activation.
    Carmines PK; Inscho EW
    Hypertension; 1994 Jan; 23(1 Suppl):I114-9. PubMed ID: 8282342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of gamma oscillations by endogenous adenosine through A1 and A2A receptors in the mouse hippocampus.
    Pietersen AN; Lancaster DM; Patel N; Hamilton JB; Vreugdenhil M
    Neuropharmacology; 2009 Feb; 56(2):481-92. PubMed ID: 18955071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.