BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16807684)

  • 1. Phosphoproteomic analysis of the human pituitary.
    Beranova-Giorgianni S; Zhao Y; Desiderio DM; Giorgianni F
    Pituitary; 2006; 9(2):109-20. PubMed ID: 16807684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteome analysis by in-gel isoelectric focusing and tandem mass spectrometry.
    Beranova-Giorgianni S; Desiderio DM; Giorgianni F
    Methods Mol Biol; 2009; 519():383-96. PubMed ID: 19381597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein profiling and phosphoprotein analysis by isoelectric focusing.
    Maccarrone G; Filiou MD
    Methods Mol Biol; 2015; 1295():293-303. PubMed ID: 25820730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry.
    Chen L; Giorgianni F; Beranova-Giorgianni S
    J Proteome Res; 2010 Jan; 9(1):174-8. PubMed ID: 20044836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome analysis using isoelectric focusing in immobilized pH gradient gels followed by mass spectrometry.
    Giorgianni F; Desiderio DM; Beranova-Giorgianni S
    Electrophoresis; 2003 Jan; 24(1-2):253-9. PubMed ID: 12652597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of phosphorylated proteins in the human pituitary.
    Giorgianni F; Beranova-Giorgianni S; Desiderio DM
    Proteomics; 2004 Mar; 4(3):587-98. PubMed ID: 14997482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics of the human pituitary tissue: bioanalytical methods and applications.
    Giorgianni F; Koirala D; Beranova-Giorgianni S
    Bioanalysis; 2014; 6(14):1989-2003. PubMed ID: 25158968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shotgun proteomics: a qualitative approach applying isoelectric focusing on immobilized pH gradient and LC-MS/MS.
    Geiser L; Vaezzadeh AR; Deshusses JM; Hochstrasser DF
    Methods Mol Biol; 2011; 681():449-58. PubMed ID: 20978982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid Chromatography Tandem Mass Spectrometry Analysis of Proteins Associated with Age-Related Disorders in Human Pituitary Tissue.
    Guest PC; Martins-de-Souza D
    Methods Mol Biol; 2020; 2138():263-276. PubMed ID: 32219755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis.
    Chen L; Fang B; Giorgianni F; Gingrich JR; Beranova-Giorgianni S
    Electrophoresis; 2011 Aug; 32(15):1984-91. PubMed ID: 21739434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of liquid-isoelectric-focusing protein fractionation to improve phosphoprotein characterization of Pseudomonas aeruginosa PA14.
    Ouidir T; Jarnier F; Cosette P; Jouenne T; Hardouin J
    Anal Bioanal Chem; 2014 Oct; 406(25):6297-309. PubMed ID: 25096199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway.
    Cantin GT; Venable JD; Cociorva D; Yates JR
    J Proteome Res; 2006 Jan; 5(1):127-34. PubMed ID: 16396503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Spectrometry Profiling of Pituitary Glands.
    Krishnamurthy D; Rahmoune H; Guest PC
    Methods Mol Biol; 2018; 1735():439-447. PubMed ID: 29380334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients.
    Stelzhammer V; Alsaif M; Chan MK; Rahmoune H; Steeb H; Guest PC; Bahn S
    J Psychiatr Res; 2015 Jan; 60():40-8. PubMed ID: 25455508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.
    Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X
    Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines.
    Wang H; Sun S; Zhang Y; Chen S; Liu P; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():90-5. PubMed ID: 25463202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation-Mediated Molecular Pathway Changes in Human Pituitary Neuroendocrine Tumors Identified by Quantitative Phosphoproteomics.
    Li J; Wen S; Li B; Li N; Zhan X
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.