BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16807787)

  • 1. Induced current bio-impedance technique for monitoring bone mineral density--a simulation model.
    Katz S; Zlochiver S; Abboud S
    Ann Biomed Eng; 2006 Aug; 34(8):1332-42. PubMed ID: 16807787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced current bio-impedance technique for monitoring cryosurgery procedure in a two-dimensional head model using generalized coordinate systems.
    Gergel A; Zlochiver S; Rosenfeld M; Abboud S
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1361-5. PubMed ID: 16042004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of human trabecular bone composition on its electrical properties.
    Sierpowska J; Lammi MJ; Hakulinen MA; Jurvelin JS; Lappalainen R; Töyräs J
    Med Eng Phys; 2007 Oct; 29(8):845-52. PubMed ID: 17097909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelationships between electrical properties and microstructure of human trabecular bone.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Kiviranta I; Jurvelin JS; Lappalainen R
    Phys Med Biol; 2006 Oct; 51(20):5289-303. PubMed ID: 17019039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical impedance spectroscopy as a potential tool for recovering bone porosity.
    Bonifasi-Lista C; Cherkaev E
    Phys Med Biol; 2009 May; 54(10):3063-82. PubMed ID: 19398814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of esophagus status and catheter configuration on multiple intraluminal impedance measurements.
    Al-Zaben A; Chandrasekar V
    Physiol Meas; 2005 Jun; 26(3):229-38. PubMed ID: 15798298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the electrical properties of bladder tissue--quantifying impedance changes due to inflammation and oedema.
    Walker DC; Smallwood RH; Keshtar A; Wilkinson BA; Hamdy FC; Lee JA
    Physiol Meas; 2005 Jun; 26(3):251-68. PubMed ID: 15798300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.
    Jaffrin MY; Morel H
    Med Eng Phys; 2008 Dec; 30(10):1257-69. PubMed ID: 18676172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of lung edema using focused impedance spectroscopy: a feasibility study.
    Mayer M; Brunner P; Merwa R; Scharfetter H
    Physiol Meas; 2005 Jun; 26(3):185-92. PubMed ID: 15798294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive imaging of bioimpedance distribution by means of current reconstruction magnetic resonance electrical impedance tomography.
    Gao N; He B
    IEEE Trans Biomed Eng; 2008 May; 55(5):1530-8. PubMed ID: 18440899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced-current electrical impedance tomography: a 2-D theoretical simulation.
    Zlochiver S; Rosenfeld M; Abboud S
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1550-60. PubMed ID: 14649745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances.
    Ward LC; Essex T; Cornish BH
    Physiol Meas; 2006 Sep; 27(9):839-50. PubMed ID: 16868350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis.
    Zhu F; Leonard EF; Levin NW
    Physiol Meas; 2005 Apr; 26(2):S133-43. PubMed ID: 15798226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of electrode array for impedance measurement of lesions in arteries.
    Cho S; Thielecke H
    Physiol Meas; 2005 Apr; 26(2):S19-26. PubMed ID: 15798232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeled current distribution inside the normal and malignant human urothelium using finite element analysis.
    Keshtkar A; Keshtkar A
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):733-8. PubMed ID: 18270011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Front-tracking image reconstruction algorithm for EIT-monitored cryosurgery using the boundary element method.
    Otten DM; Rubinsky B
    Physiol Meas; 2005 Aug; 26(4):503-16. PubMed ID: 15886444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal resolution of the skin impedance measurement in frequency-domain method.
    Fukumoto T; Eom GM; Ohba S; Futami R; Hoshimiya N
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):170-3. PubMed ID: 17260871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography.
    Fournier-Desseux A; Jossinet J
    Physiol Meas; 2005 Aug; 26(4):337-49. PubMed ID: 15886430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.