BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16807809)

  • 1. Numerical estimation of heat distribution from the implantable battery system of an undulation pump LVAD.
    Okamoto E; Makino T; Nakamura M; Tanaka S; Chinzei T; Abe Y; Isoyama T; Saito I; Mochizuki S; Imachi K; Inoue Y; Mitamura Y
    J Artif Organs; 2006; 9(2):77-83. PubMed ID: 16807809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an implantable high-energy and compact battery system for artificial heart.
    Okamoto E; Inoue T; Watanabe K; Hashimoto T; Iwazawa E; Abe Y; Chinzei T; Isoyama T; Kobayashi S; Saito I; Sato F; Matsuki H; Imachi K; Mitamura Y
    Artif Organs; 2003 Feb; 27(2):184-8. PubMed ID: 12580777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of integrated electronics unit for drive and control of undulation pump-left ventricular assist device.
    Okamoto E; Makino T; Inoue Y; Tanaka S; Yasuda T; Nakamura M; Saito I; Abe Y; Chinzei T; Isoyama T; Mochiizuki S; Imachi K; Mitamura Y
    Artif Organs; 2006 May; 30(5):403-5. PubMed ID: 16683960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.
    Okamoto E; Watanabe K; Hashiba K; Inoue T; Iwazawa E; Momoi M; Hashimoto T; Mitamura Y
    ASAIO J; 2002; 48(5):495-502. PubMed ID: 12296569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent Li ion battery management based on a digital signal processor for a moving actuator total artificial heart.
    Kim WE; Ahn JM; Choi SW; Min BG
    ASAIO J; 1997; 43(5):M588-92. PubMed ID: 9360113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in Implantable Medical Device Battery].
    Fang Y; Hou W; Zhou W; Zhang H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Jul; 42(4):272-275. PubMed ID: 30112893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating Rate Calorimetry and Complementary Techniques to Characterize Battery Safety Hazards.
    Klein EJ; Carter R; Love CT
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An implantable power supply with an optically rechargeable lithium battery.
    Goto K; Nakagawa T; Nakamura O; Kawata S
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):830-3. PubMed ID: 11442295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Cathode Lithium Battery Discharge Simulation for Implantable Cardioverter Defibrillators Using a Coupled Electro-Thermal Dynamic Model.
    Doosthosseini M; Ghods H; Talkhoncheh MK; Silberberg JL; Weininger S
    Cardiovasc Eng Technol; 2023 Aug; 14(4):534-543. PubMed ID: 37566310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the Properties of Fractional Heat Conduction in Porous Electrodes of Lithium-Ion Batteries.
    Lu X; Li H; Chen N
    Entropy (Basel); 2021 Feb; 23(2):. PubMed ID: 33562591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat dissipation through the blood contacting surface of a thermally driven LVAS.
    Navarro RR; Kiraly RJ; Harasaki H; Nasu M; Nosè Y
    Int J Artif Organs; 1988 Sep; 11(5):381-6. PubMed ID: 3192316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo heat dissipation of an electrohydraulic totally implantable artificial heart.
    Endo S; Masuzawa T; Tatsumi E; Taenaka Y; Nakatani T; Ohno T; Wakisaka Y; Nishimura T; Takewa Y; Nakamura M; Takiura K; Sohn YS; Takano H
    ASAIO J; 1997; 43(5):M592-7. PubMed ID: 9360114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.
    Cai W; Zhang Y; Li J; Sun Y; Cheng H
    ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the critical external heat leading to the failure of lithium-ion batteries.
    Tang W; Tam WC; Yuan L; Dubaniewicz T; Thomas R; Soles J
    Appl Therm Eng; 2020 Oct; 179():. PubMed ID: 34434069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated Implantable Defibrillator Battery Depletion Secondary to Lithium Cluster Formation: A Case Series.
    Aggarwal A; Sarmiento JJ; Charles DR; Parr AR; Baman TS
    Pacing Clin Electrophysiol; 2016 Apr; 39(4):375-7. PubMed ID: 26711220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents.
    Li L; Ju X; Zhou X; Peng Y; Zhou Z; Cao B; Yang L
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life testing of implantable batteries for a total artificial heart.
    Powers RA; Wolga AE; Ochs BD; Yu LS; Kung RT
    ASAIO J; 1993; 39(3):M663-7. PubMed ID: 8268621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of rechargeable lithium and nickel/cadmium battery cells for implantable circulatory support devices.
    MacLean GK; Aiken PA; Adams WA; Mussivand T
    Artif Organs; 1994 Apr; 18(4):331-4. PubMed ID: 8024488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.