These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16807809)

  • 21. Electrical power to run ventricular assist devices using the Free-range Resonant Electrical Energy Delivery system.
    Waters BH; Park J; Bouwmeester JC; Valdovinos J; Geirsson A; Sample AP; Smith JR; Bonde P
    J Heart Lung Transplant; 2018 Dec; 37(12):1467-1474. PubMed ID: 30228086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel mechanism of premature battery failure due to lithium cluster formation in implantable cardioverter-defibrillators.
    Pokorney SD; Greenfield RA; Atwater BD; Daubert JP; Piccini JP
    Heart Rhythm; 2014 Dec; 11(12):2190-5. PubMed ID: 25086256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cardiac implantable electronic device power source: evolution and revolution.
    Mond HG; Freitag G
    Pacing Clin Electrophysiol; 2014 Dec; 37(12):1728-45. PubMed ID: 25387600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.
    Jhu CY; Wang YW; Shu CM; Chang JC; Wu HC
    J Hazard Mater; 2011 Aug; 192(1):99-107. PubMed ID: 21612866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of thermal dissipation effects in a ventricular assist device - biomed 2013.
    Kailasan A; Untaroiu A; Pravin S; Wood HG
    Biomed Sci Instrum; 2013; 49():124-33. PubMed ID: 23686191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.
    Zhang C; He Y; Yuan L; Xiang S; Wang J
    Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.
    Lee CY; Lee SJ; Tang MS; Chen PC
    Sensors (Basel); 2011; 11(10):9942-50. PubMed ID: 22163735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.
    Zhang J; Liu Z; Kong Q; Zhang C; Pang S; Yue L; Wang X; Yao J; Cui G
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):128-34. PubMed ID: 23227828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implantable control, telemetry, and solar energy system in the moving actuator type total artificial heart.
    Ahn JM; Lee JH; Choi SW; Kim WE; Omn KS; Park SK; Kim WG; Roh JR; Min BG
    Artif Organs; 1998 Mar; 22(3):250-9. PubMed ID: 9527287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The 6 volt battery for implantable cardioverter/defibrillators.
    Drews J; Wolf R; Fehrmann G; Staub R
    Biomed Tech (Berl); 1998; 43(1-2):2-5. PubMed ID: 9542281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lithium-ion battery structure that self-heats at low temperatures.
    Wang CY; Zhang G; Ge S; Xu T; Ji Y; Yang XG; Leng Y
    Nature; 2016 Jan; 529(7587):515-8. PubMed ID: 26789253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Analysis of the PediaFlow pediatric ventricular assist device.
    Gardiner JM; Wu J; Noh MD; Antaki JF; Snyder TA; Paden DB; Paden BE
    ASAIO J; 2007; 53(1):65-73. PubMed ID: 17237651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cycle testing of the MagScrew total artificial heart external battery pack.
    Casas F; Weber S; Klatte R; Luangphakdy V; Smith WA
    Artif Organs; 2007 Sep; 31(9):698-702. PubMed ID: 17725697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of the solar cell system for recharging the external battery of the totally-implantable artificial heart.
    Tchin-Iou AV; Min BG
    Int J Artif Organs; 1999 Dec; 22(12):823-6. PubMed ID: 10654879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation Study on Temperature Control Performance of Lithium-Ion Battery Fires by Fine Water Mist in Energy Storage Stations.
    Yao H; Lv K; Lou Z; Huang J; Zhang Y; Zhang Z; Wang M; Wei X
    ACS Omega; 2024 Jun; 9(25):27104-27112. PubMed ID: 38947830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A critical review on renewable battery thermal management system using heat pipes.
    Afzal A; Abdul Razak RK; Mohammed Samee AD; Kumar R; Ağbulut Ü; Park SG
    J Therm Anal Calorim; 2023 May; ():1-40. PubMed ID: 37361725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of electrochemical behavior in Lithium ion battery during discharge process.
    Chen Y; Huo W; Lin M; Zhao L
    PLoS One; 2018; 13(1):e0189757. PubMed ID: 29293535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental data of lithium-ion batteries under galvanostatic discharge tests at different rates and temperatures of operation.
    Catenaro E; Onori S
    Data Brief; 2021 Apr; 35():106894. PubMed ID: 33732821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.