These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16808336)

  • 1. [Estimation of the hydrophobic effect based on the density functional theory].
    Chuev GN; Sokolov VF
    Biofizika; 2006; 51(3):402-8. PubMed ID: 16808336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration of hydrophobic solutes treated by the fundamental measure approach.
    Chuev GN; Sokolov VF
    J Phys Chem B; 2006 Sep; 110(37):18496-503. PubMed ID: 16970477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integral equation study of hydrophobic interaction: a comparison between the simple point charge model for water and a Lennard-Jones model for solvent.
    Sumi T; Sekino H
    J Chem Phys; 2007 Apr; 126(14):144508. PubMed ID: 17444724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-consistent combination of the three-dimensional RISM theory of molecular solvation with analytical gradients and the Amsterdam density functional package.
    Gusarov S; Ziegler T; Kovalenko A
    J Phys Chem A; 2006 May; 110(18):6083-90. PubMed ID: 16671679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory for the solvation of nonpolar solutes in water.
    Urbic T; Vlachy V; Kalyuzhnyi YV; Dill KA
    J Chem Phys; 2007 Nov; 127(17):174505. PubMed ID: 17994825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobicity in Lennard-Jones solutions.
    Ishizaki M; Tanaka H; Koga K
    Phys Chem Chem Phys; 2011 Feb; 13(6):2328-34. PubMed ID: 21116568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT-based linear solvation energy relationships for the infrared spectral shifts of acetone in polar and nonpolar organic solvents.
    Chang CM
    J Phys Chem A; 2008 Mar; 112(11):2482-8. PubMed ID: 18284222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of hydrophobic association of nanoscopic solutes.
    Choudhury N; Pettitt BM
    J Am Chem Soc; 2005 Mar; 127(10):3556-67. PubMed ID: 15755177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A probabilistic method for the calculation of energy of hydrophobic interactions].
    Sokolov VF; Chuev GN
    Biofizika; 2006; 51(2):207-13. PubMed ID: 16637324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of the DFT-D method, paired with the PCM implicit solvation model, for the computation of interaction energies of solvated complexes of biological interest.
    Riley KE; Vondrásek J; Hobza P
    Phys Chem Chem Phys; 2007 Nov; 9(41):5555-60. PubMed ID: 17957311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the level-set method to the implicit solvation of nonpolar molecules.
    Cheng LT; Dzubiella J; McCammon JA; Li B
    J Chem Phys; 2007 Aug; 127(8):084503. PubMed ID: 17764265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular origin of anticooperativity in hydrophobic association.
    Czaplewski C; Liwo A; Ripoll DR; Scheraga HA
    J Phys Chem B; 2005 Apr; 109(16):8108-19. PubMed ID: 16851948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the influence of solute polarizability on the hydrophobic interaction.
    Bresme F; Wynveen A
    J Chem Phys; 2007 Jan; 126(4):044501. PubMed ID: 17286481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the performance of the coupled reference interaction site model-hyper-netted chain (RISM-HNC)/simulation method for free energy of solvation.
    Freedman H; Le L; Tuszynski JA; Truong TN
    J Phys Chem B; 2008 Feb; 112(8):2340-8. PubMed ID: 18251537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational assessment of the entropy of solvation of small-sized hydrophobic entities.
    Mahajan R; Kranzlmüller D; Volkert J; Hansmann UH; Höfinger S
    Phys Chem Chem Phys; 2006 Dec; 8(47):5515-21. PubMed ID: 17136266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of implicit solvent models for the simulation of protein-surface interactions.
    Sun Y; Latour RA
    J Comput Chem; 2006 Dec; 27(16):1908-22. PubMed ID: 17019723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile.
    Namazian M; Coote ML
    J Phys Chem A; 2007 Aug; 111(30):7227-32. PubMed ID: 17625811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic interactions between methane and a nanoscopic pocket: three dimensional distribution of potential of mean force revealed by computer simulations.
    Setny P
    J Chem Phys; 2008 Mar; 128(12):125105. PubMed ID: 18376980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on orientation and absorption spectrum of interfacial molecules by using continuum model.
    Ma JY; Wang JB; Li XY; Huang Y; Zhu Q; Fu KX
    J Comput Chem; 2008 Jan; 29(2):198-210. PubMed ID: 17557282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.