BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1680843)

  • 21. Effect of glutamine on glutamate release from hippocampal slices induced by high K+ or by electrical stimulation: interaction with different Ca2+ concentrations.
    Szerb JC; O'Regan PA
    J Neurochem; 1985 Jun; 44(6):1724-31. PubMed ID: 2859354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clonidine inhibition of potassium-evoked release of glutamate and aspartate from rat cortical synaptosomes.
    Kamisaki Y; Hamahashi T; Okada CM; Itoh T
    Brain Res; 1991 Dec; 568(1-2):193-8. PubMed ID: 1814567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patterns of endogenous amino acid release from slices of rat and guinea-pig olfactory cortex.
    Collins GG; Anson J; Probett GA
    Brain Res; 1981 Jan; 204(1):103-20. PubMed ID: 6113871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunocytochemical evidence for in vitro release of glutamate and GABA from separate nerve terminal populations in the rat pontine nuclei.
    Aas JE; Laake JH; Brodal P; Ottersen OP
    Exp Brain Res; 1992; 89(3):540-8. PubMed ID: 1353724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in the principal free intracellular amino acids in the Langendorff perfused guinea pig heart during arrest with calcium-free or high potassium media.
    Suleiman MS; Chapman RA
    Cardiovasc Res; 1993 Oct; 27(10):1810-4. PubMed ID: 8275528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Release of endogenous N-acetylaspartylglutamate (NAAG) and uptake of [3H]NAAG in guinea pig cerebellar slices.
    Sekiguchi M; Okamoto K; Sakai Y
    Brain Res; 1989 Mar; 482(1):78-86. PubMed ID: 2565140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism and transport of amino acids studied by immunocytochemistry.
    Storm-Mathisen J; Ottersen OP; Fu-Long T; Gundersen V; Laake JH; Nordbø G
    Med Biol; 1986; 64(2-3):127-32. PubMed ID: 2875229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disturbance of regulation of sodium by cis-diamminedichloroplatinum in perilymph of the guinea pig cochlea.
    Komune S; Matsuda K; Nakagawa T; Kimitsuki T; Hisashi K; Inokuchi A; Komiyama S; Kobayashi T
    Ann Otol Rhinol Laryngol; 1995 Feb; 104(2):149-54. PubMed ID: 7857018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnitude of the negative summating potential varies with perilymph calcium levels.
    Bobbin RP; Fallon M; Kujawa SG
    Hear Res; 1991 Nov; 56(1-2):101-10. PubMed ID: 1663103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamic acid and gamma-aminobutyric acid modulate each other's release through heterocarriers sited on the axon terminals of rat brain.
    Bonanno G; Pittaluga A; Fedele E; Fontana G; Raiteri M
    J Neurochem; 1993 Jul; 61(1):222-30. PubMed ID: 8099950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Release of endogenous glutamic and aspartic acids from cerebrocortex synaptosomes and its modulation through activation of a gamma-aminobutyric acidB (GABAB) receptor subtype.
    Pende M; Lanza M; Bonanno G; Raiteri M
    Brain Res; 1993 Feb; 604(1-2):325-30. PubMed ID: 8096158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ontogeny of glutamate and gamma-aminobutyric acid release in the hippocampus of the guinea pig.
    Reynolds JD; Brien JF
    J Dev Physiol; 1992 Nov; 18(5):243-52. PubMed ID: 1307100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro.
    Machiyama Y; Balázs R; Hammond BJ; Julian T; Richter D
    Biochem J; 1970 Feb; 116(3):469-81. PubMed ID: 5435691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo release of neuroactive amino acids from the inferior colliculus of the guinea pig using brain microdialysis.
    Goldsmith JD; Kujawa SG; McLaren JD; Bledsoe SC
    Hear Res; 1995 Mar; 83(1-2):80-8. PubMed ID: 7607993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of sound stimulation at several levels on concentrations of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear.
    Drescher MJ; Drescher DG; Medina JE
    J Neurochem; 1983 Aug; 41(2):309-20. PubMed ID: 6135750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid transport in isolated neurons and glia.
    Hamberger A; Nyström B; Sellström A; Woiler CT
    Adv Exp Med Biol; 1976; 69():221-36. PubMed ID: 7926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of the cationic composition in perilymph upon the N1 latency of the guinea pig.
    Ikeda K; Kusakari J; Takasaka T
    Acta Otolaryngol; 1987; 103(1-2):43-9. PubMed ID: 3564928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of changes evoked by GABA (gamma-aminobutyric acid) and anoxia in [K+]o, [Cl-]o, and [Na+]o in stratum pyramidale and stratum radiatum of the guinea pig hippocampus.
    Obrocea GV; Morris ME
    Can J Physiol Pharmacol; 2000 May; 78(5):378-91. PubMed ID: 10841433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutamine enhances glutamate release in preference to gamma-aminobutyrate release in hippocampal slices.
    Szerb JC; O'Regan PA
    Can J Physiol Pharmacol; 1984 Aug; 62(8):919-23. PubMed ID: 6149005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro release of endogenous amino acids from granule cell-, stellate cell-, and climbing fiber-deficient cerebella.
    Flint RS; Rea MA; McBride WJ
    J Neurochem; 1981 Dec; 37(6):1425-30. PubMed ID: 7334371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.