These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1680865)

  • 41. Binding of alpha-bungarotoxin and cholinergic ligands to acetylcholine receptors in the membrane of skeletal muscle.
    Barnard EA; Coates V; Dolly JO; Mallick B
    Cell Biol Int Rep; 1977 Jan; 1(1):99-106. PubMed ID: 610870
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional and non-functional isoforms of the human muscle acetylcholine receptor.
    Newland CF; Beeson D; Vincent A; Newsom-Davis J
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):767-78. PubMed ID: 8788941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epitope mapping of monoclonal antibodies to Torpedo acetylcholine receptor gamma subunits, which specifically recognize the epsilon subunit of mammalian muscle acetylcholine receptor.
    Nelson S; Shelton GD; Lei S; Lindstrom JM; Conti-Tronconi BM
    J Neuroimmunol; 1992 Jan; 36(1):13-27. PubMed ID: 1370956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of d-tubocurarine analogs with the Torpedo nicotinic acetylcholine receptor. Methylation and stereoisomerization affect site-selective competitive binding and binding to the noncompetitive site.
    Pedersen SE; Papineni RV
    J Biol Chem; 1995 Dec; 270(52):31141-50. PubMed ID: 8537377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The actions of muscle relaxants at nicotinic acetylcholine receptor isoforms.
    Garland CM; Foreman RC; Chad JE; Holden-Dye L; Walker RJ
    Eur J Pharmacol; 1998 Sep; 357(1):83-92. PubMed ID: 9788777
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671.
    Luther MA; Schoepfer R; Whiting P; Casey B; Blatt Y; Montal MS; Montal M; Linstrom J
    J Neurosci; 1989 Mar; 9(3):1082-96. PubMed ID: 2564429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants.
    Chiara DC; Xie Y; Cohen JB
    Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TE671 cells express an abundance of a partially mature acetylcholine receptor alpha subunit which has characteristics of an assembly intermediate.
    Conroy WG; Saedi MS; Lindstrom J
    J Biol Chem; 1990 Dec; 265(35):21642-51. PubMed ID: 2254320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering.
    Mittaud P; Marangi PA; Erb-Vögtli S; Fuhrer C
    J Biol Chem; 2001 Apr; 276(17):14505-13. PubMed ID: 11278328
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit.
    Hoffmann K; Muller JS; Stricker S; Megarbane A; Rajab A; Lindner TH; Cohen M; Chouery E; Adaimy L; Ghanem I; Delague V; Boltshauser E; Talim B; Horvath R; Robinson PN; Lochmüller H; Hübner C; Mundlos S
    Am J Hum Genet; 2006 Aug; 79(2):303-12. PubMed ID: 16826520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of the nicotinic acetylcholine receptor binding sites.
    Green WN; Wanamaker CP
    J Neurosci; 1998 Aug; 18(15):5555-64. PubMed ID: 9671647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human thymuses express incomplete sets of muscle acetylcholine receptor subunit transcripts that seldom include the delta subunit.
    Navaneetham D; Penn AS; Howard JF; Conti-Fine BM
    Muscle Nerve; 2001 Feb; 24(2):203-10. PubMed ID: 11180203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression and characterization of soluble forms of the extracellular domains of the beta, gamma and epsilon subunits of the human muscle acetylcholine receptor.
    Kostelidou K; Trakas N; Zouridakis M; Bitzopoulou K; Sotiriadis A; Gavra I; Tzartos SJ
    FEBS J; 2006 Aug; 273(15):3557-68. PubMed ID: 16884496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular dissection of subunit interfaces in the acetylcholine receptor. Identification of residues that determine agonist selectivity.
    Prince RJ; Sine SM
    J Biol Chem; 1996 Oct; 271(42):25770-7. PubMed ID: 8824205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assembly of an adult type acetylcholine receptor in a mouse cell line transfected with rat muscle epsilon-subunit DNA.
    Criado M; Koenen M; Sakmann B
    FEBS Lett; 1990 Sep; 270(1-2):95-9. PubMed ID: 1699795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies.
    Sargent PB; Hedges BE; Tsavaler L; Clemmons L; Tzartos S; Lindstrom JM
    J Cell Biol; 1984 Feb; 98(2):609-18. PubMed ID: 6363425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rearrangement of nicotinic receptor alpha subunits during formation of the ligand binding sites.
    Mitra M; Wanamaker CP; Green WN
    J Neurosci; 2001 May; 21(9):3000-8. PubMed ID: 11312284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of receptor-ligand interactions using nitrocellulose gel transfer: application to Torpedo acetylcholine receptor and alpha-bungarotoxin.
    Oblas B; Boyd ND; Singer RH
    Anal Biochem; 1983 Apr; 130(1):1-8. PubMed ID: 6869791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subunit-specific contribution to agonist binding and channel gating revealed by inherited mutation in muscle acetylcholine receptor M3-M4 linker.
    Shen XM; Ohno K; Sine SM; Engel AG
    Brain; 2005 Feb; 128(Pt 2):345-55. PubMed ID: 15615813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation of cholinergic synapse-like specializations at developing murine muscle spindles.
    Zhang Y; Wesolowski M; Karakatsani A; Witzemann V; Kröger S
    Dev Biol; 2014 Sep; 393(2):227-235. PubMed ID: 25064185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.