BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16808854)

  • 1. Evolution of candidate transcriptional regulatory motifs since the human-chimpanzee divergence.
    Donaldson IJ; Göttgens B
    Genome Biol; 2006; 7(6):R52. PubMed ID: 16808854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-random genomic divergence in repetitive sequences of human and chimpanzee in genes of different functional categories.
    Shankar R; Chaurasia A; Ghosh B; Chekmenev D; Cheremushkin E; Kel A; Mukerji M
    Mol Genet Genomics; 2007 Apr; 277(4):441-55. PubMed ID: 17375324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative integromics on FZD7 orthologs: conserved binding sites for PU.1, SP1, CCAAT-box and TCF/LEF/SOX transcription factors within 5'-promoter region of mammalian FZD7 orthologs.
    Katoh M; Katoh M
    Int J Mol Med; 2007 Mar; 19(3):529-33. PubMed ID: 17273804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionary history of human and chimpanzee Y-chromosome gene loss.
    Perry GH; Tito RY; Verrelli BC
    Mol Biol Evol; 2007 Mar; 24(3):853-9. PubMed ID: 17218643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimpanzee, orangutan, mouse, and human cell cycle promoters exempt CCAAT boxes and CHR elements from interspecies differences.
    Müller GA; Heissig F; Engeland K
    Mol Biol Evol; 2007 Mar; 24(3):814-26. PubMed ID: 17205977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust inference of positive selection on regulatory sequences in the human brain.
    Liu J; Robinson-Rechavi M
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33246961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of DNAase I Hypersensitive Sites in MHC Regulatory Regions of Primates.
    Jin Y; Gittelman RM; Lu Y; Liu X; Li MD; Ling F; Akey JM
    Genetics; 2018 Jun; 209(2):579-589. PubMed ID: 29669733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome.
    De S; Teichmann SA; Babu MM
    Genome Res; 2009 May; 19(5):785-94. PubMed ID: 19233772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated evolution of conserved noncoding sequences in humans.
    Prabhakar S; Noonan JP; Pääbo S; Rubin EM
    Science; 2006 Nov; 314(5800):786. PubMed ID: 17082449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover.
    Dermitzakis ET; Clark AG
    Mol Biol Evol; 2002 Jul; 19(7):1114-21. PubMed ID: 12082130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A comparative analysis of regulatory regions of the transthyretin gene in the mouse, human, and chimpanzee genomes].
    Nadezhdin EV; Vinogradova TV; Sverdlov ED
    Bioorg Khim; 2004; 30(4):383-8. PubMed ID: 15469012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many human accelerated regions are developmental enhancers.
    Capra JA; Erwin GD; McKinsey G; Rubenstein JL; Pollard KS
    Philos Trans R Soc Lond B Biol Sci; 2013 Dec; 368(1632):20130025. PubMed ID: 24218637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent microsatellite evolution in the human and chimpanzee lineages.
    Gáspári Z; Ortutay C; Tóth G
    FEBS Lett; 2007 May; 581(13):2523-6. PubMed ID: 17498704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary processes acting on candidate cis-regulatory regions in humans inferred from patterns of polymorphism and divergence.
    Torgerson DG; Boyko AR; Hernandez RD; Indap A; Hu X; White TJ; Sninsky JJ; Cargill M; Adams MD; Bustamante CD; Clark AG
    PLoS Genet; 2009 Aug; 5(8):e1000592. PubMed ID: 19662163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of De Novo Genes in Human and Chimpanzee.
    Ruiz-Orera J; Hernandez-Rodriguez J; Chiva C; Sabidó E; Kondova I; Bontrop R; Marqués-Bonet T; Albà MM
    PLoS Genet; 2015 Dec; 11(12):e1005721. PubMed ID: 26720152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomic analysis of human and chimpanzee proteases.
    Puente XS; Gutiérrez-Fernández A; Ordóñez GR; Hillier LW; López-Otín C
    Genomics; 2005 Dec; 86(6):638-47. PubMed ID: 16162398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation and variation in human and common chimpanzee CD94 and NKG2 genes.
    Shum BP; Flodin LR; Muir DG; Rajalingam R; Khakoo SI; Cleland S; Guethlein LA; Uhrberg M; Parham P
    J Immunol; 2002 Jan; 168(1):240-52. PubMed ID: 11751968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Serum Challenges Show Divergent Patterns of Gene Expression and Open Chromatin in Human and Chimpanzee.
    Pizzollo J; Nielsen WJ; Shibata Y; Safi A; Crawford GE; Wray GA; Babbitt CC
    Genome Biol Evol; 2018 Mar; 10(3):826-839. PubMed ID: 29608722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High divergence in primate-specific duplicated regions: human and chimpanzee chorionic gonadotropin beta genes.
    Hallast P; Saarela J; Palotie A; Laan M
    BMC Evol Biol; 2008 Jul; 8():195. PubMed ID: 18606016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of chimpanzee full-length cDNAs onto the human genome unveils large potential divergence of the transcriptome.
    Sakate R; Suto Y; Imanishi T; Tanoue T; Hida M; Hayasaka I; Kusuda J; Gojobori T; Hashimoto K; Hirai M
    Gene; 2007 Sep; 399(1):1-10. PubMed ID: 17574350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.