These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16808858)

  • 1. Mapping bacterial surface population physiology in real-time: infrared spectroscopy of Proteus mirabilis swarm colonies.
    Keirsse J; Lahaye E; Bouter A; Dupont V; Boussard-Plédel C; Bureau B; Adam JL; Monbet V; Sire O
    Appl Spectrosc; 2006 Jun; 60(6):584-91. PubMed ID: 16808858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of 3D architecture of uropathogenic Proteus mirabilis batch culture biofilms-A quantitative confocal microscopy approach.
    Schlapp G; Scavone P; Zunino P; Härtel S
    J Microbiol Methods; 2011 Nov; 87(2):234-40. PubMed ID: 21864585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm structure differentiation based on multi-resolution analysis.
    Yerly J; Hu Y; Martinuzzi RJ
    Biofouling; 2008; 24(5):323-37. PubMed ID: 18568669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of Proteus mirabilis biofilms grown in artificial urine and standard laboratory media.
    Jones SM; Yerly J; Hu Y; Ceri H; Martinuzzi R
    FEMS Microbiol Lett; 2007 Mar; 268(1):16-21. PubMed ID: 17250761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swarmer cell differentiation in Proteus mirabilis.
    Rather PN
    Environ Microbiol; 2005 Aug; 7(8):1065-73. PubMed ID: 16011745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upconversion fiber-optic confocal microscopy under near-infrared pumping.
    Kim DH; Kang JU; Ilev IK
    Opt Lett; 2008 Mar; 33(5):425-7. PubMed ID: 18311280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial swarming: a biochemical time-resolved FTIR-ATR study of Proteus mirabilis swarm-cell differentiation.
    Gué M; Dupont V; Dufour A; Sire O
    Biochemistry; 2001 Oct; 40(39):11938-45. PubMed ID: 11570895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrified catheter to resist encrustation by Proteus mirabilis biofilm.
    Chakravarti A; Gangodawila S; Long MJ; Morris NS; Blacklock AR; Stickler DJ
    J Urol; 2005 Sep; 174(3):1129-32. PubMed ID: 16094079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner.
    Liu JT; Mandella MJ; Ra H; Wong LK; Solgaard O; Kino GS; Piyawattanametha W; Contag CH; Wang TD
    Opt Lett; 2007 Feb; 32(3):256-8. PubMed ID: 17215937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An equivalent time temperature mapping system with a 320 x 256 pixels full-frame 100 kHz sampling rate.
    Riccio M; Breglio G; Irace A; Spirito P
    Rev Sci Instrum; 2007 Oct; 78(10):106106. PubMed ID: 17979462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of micro-attenuated total reflectance infrared spectroscopy to quantitative analysis of optical fiber coatings: effects of optical contact.
    Stolov AA; Simoff DA
    Appl Spectrosc; 2006 Jan; 60(1):29-38. PubMed ID: 16454908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.
    Watkins NJ; Long JP; Kafafi ZH; Mäkinen AJ
    Rev Sci Instrum; 2007 May; 78(5):053707. PubMed ID: 17552825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared scanning near-field optical microscopy investigates order and clusters in model membranes.
    Generosi J; Margaritondo G; Sanghera JS; Aggarwal ID; Tolk NH; Piston DW; Castellano AC; Cricenti A
    J Microsc; 2008 Feb; 229(Pt 2):259-63. PubMed ID: 18304082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber-based confocal microscope for cryogenic spectroscopy.
    Högele A; Seidl S; Kroner M; Karrai K; Schulhauser C; Sqalli O; Scrimgeour J; Warburton RJ
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023709. PubMed ID: 18315307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection.
    Matsuura Y; Kino S; Katagiri T
    Appl Opt; 2009 Oct; 48(28):5396-400. PubMed ID: 19798380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of periodic swarming of bacteria: application to Proteus mirabilis.
    Czirók A; Matsushita M; Vicsek T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031915. PubMed ID: 11308686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery.
    Zuzak KJ; Naik SC; Alexandrakis G; Hawkins D; Behbehani K; Livingston EH
    Anal Chem; 2007 Jun; 79(12):4709-15. PubMed ID: 17492839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy.
    Vercauteren T; Perchant A; Malandain G; Pennec X; Ayache N
    Med Image Anal; 2006 Oct; 10(5):673-92. PubMed ID: 16887375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radial and spiral stream formation in Proteus mirabilis colonies.
    Xue C; Budrene EO; Othmer HG
    PLoS Comput Biol; 2011 Dec; 7(12):e1002332. PubMed ID: 22219724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of biofilm formation by Proteus mirabilis strains on the surface of different biomaterials by two methods].
    Kwiecińska-Piróg J; Bogiel T; Gospodarek E
    Med Dosw Mikrobiol; 2011; 63(2):131-8. PubMed ID: 22184907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.