These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
990 related articles for article (PubMed ID: 16808910)
1. Computer systems analysis of spaceflight induced changes in left ventricular mass. Summers RL; Martin DS; Meck JV; Coleman TG Comput Biol Med; 2007 Mar; 37(3):358-63. PubMed ID: 16808910 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of spaceflight-induced changes in left ventricular mass. Summers RL; Martin DS; Meck JV; Coleman TG Am J Cardiol; 2005 May; 95(9):1128-30. PubMed ID: 15842991 [TBL] [Abstract][Full Text] [Related]
3. Computer systems analysis of the cardiovascular mechanisms of reentry orthostasis in astronauts. Summers RL; Coleman TG Comput Cardiol; 2002; 29():521-4. PubMed ID: 14686452 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of cardiovascular risks of spaceflight does not support the NASA bioastronautics critical path roadmap. Convertino VA; Cooke WH Aviat Space Environ Med; 2005 Sep; 76(9):869-76. PubMed ID: 16173685 [TBL] [Abstract][Full Text] [Related]
5. Head-out immersion in the non-human primate: a model of cardiovascular deconditioning during microgravity. Cornish KG; Hughes K; Dreessen A; Olguin M Aviat Space Environ Med; 1999 Aug; 70(8):773-9. PubMed ID: 10447051 [TBL] [Abstract][Full Text] [Related]
6. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission. Pompeiano O Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184 [TBL] [Abstract][Full Text] [Related]
7. Theoretical analysis of the mechanisms of a gender differentiation in the propensity for orthostatic intolerance after spaceflight. Summers RL; Platts S; Myers JG; Coleman TG Theor Biol Med Model; 2010 Mar; 7():8. PubMed ID: 20298577 [TBL] [Abstract][Full Text] [Related]
8. Regulation of body fluid volume and electrolyte concentrations in spaceflight. Smith SM; Krauhs JM; Leach CS Adv Space Biol Med; 1997; 6():123-65. PubMed ID: 9048137 [TBL] [Abstract][Full Text] [Related]
9. Changes in monocyte functions of astronauts. Kaur I; Simons ER; Castro VA; Ott CM; Pierson DL Brain Behav Immun; 2005 Nov; 19(6):547-54. PubMed ID: 15908177 [TBL] [Abstract][Full Text] [Related]
10. Physiologic mechanisms effecting circulatory and body fluid losses in weightlessness as shown by mathematical modeling. Simanonok KE; Srinivasan RS; Charles JB Physiologist; 1993; 36(1 Suppl):S112-3. PubMed ID: 11537415 [TBL] [Abstract][Full Text] [Related]
11. Changes in myocardial contractility and contractile proteins after four weeks of simulated [correction of simulate] weightlessness in rats. Yu ZB; Bao JX; Ma J; Zhang LF; Jin JP J Gravit Physiol; 2000 Jul; 7(2):P147-8. PubMed ID: 12697490 [TBL] [Abstract][Full Text] [Related]
12. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193 [TBL] [Abstract][Full Text] [Related]
13. Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight. Verheyden B; Beckers F; Couckuyt K; Liu J; Aubert AE Acta Physiol (Oxf); 2007 Dec; 191(4):297-308. PubMed ID: 17784903 [TBL] [Abstract][Full Text] [Related]
14. Effects of microgravity on osteoblast growth. Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639 [TBL] [Abstract][Full Text] [Related]
15. Cardiovascular deconditioning and venous air embolism in simulated microgravity in the rat. Robinson RR; Doursout MF; Chelly JE; Powell MR; Little TM; Butler BD Aviat Space Environ Med; 1996 Sep; 67(9):835-40. PubMed ID: 9025798 [TBL] [Abstract][Full Text] [Related]
16. Endocrine, renal, and circulatory influences on fluid and electrolyte homeostasis during weightlessness: a joint Russian-U.S. project. Grigoriev AI; Huntoon CL; Morukov BV; Lane HW; Larina IM; Smith SM J Gravit Physiol; 1996 Sep; 3(2):83-6. PubMed ID: 11540295 [TBL] [Abstract][Full Text] [Related]
18. Changes in neutrophil functions in astronauts. Kaur I; Simons ER; Castro VA; Mark Ott C; Pierson DL Brain Behav Immun; 2004 Sep; 18(5):443-50. PubMed ID: 15265537 [TBL] [Abstract][Full Text] [Related]
19. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures. Convertino VA Gravit Space Biol Bull; 2005 Jun; 18(2):59-69. PubMed ID: 16038093 [TBL] [Abstract][Full Text] [Related]
20. Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Moore TP; Thornton WE Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A91-6. PubMed ID: 3675513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]