BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16809132)

  • 1. Comparative analysis of polymer and linker chemistries on the efficacy of immunocamouflage of murine leukocytes.
    Chen AM; Scott MD
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(3):305-22. PubMed ID: 16809132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the red cell: pegylation of other blood cells and tissues.
    Scott MD; Chen AM
    Transfus Clin Biol; 2004 Feb; 11(1):40-6. PubMed ID: 14980548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative efficacy of blood cell immunocamouflage by membrane grafting of methoxypoly(ethylene glycol) and polyethyloxazoline.
    Kyluik-Price DL; Li L; Scott MD
    Biomaterials; 2014 Jan; 35(1):412-22. PubMed ID: 24074839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of allogeneic cytotoxic T cell (CD8
    Kang N; Toyofuku WM; Yang X; Scott MD
    Acta Biomater; 2017 Jul; 57():146-155. PubMed ID: 28442414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of immunotolerance via mPEG grafting to allogeneic leukocytes.
    Wang D; Toyofuku WM; Chen AM; Scott MD
    Biomaterials; 2011 Dec; 32(35):9494-503. PubMed ID: 21885118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocamouflage: prevention of transfusion-induced graft-versus-host disease via polymer grafting of donor cells.
    Chen AM; Scott MD
    J Biomed Mater Res A; 2003 Nov; 67(2):626-36. PubMed ID: 14566806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of methoxypoly (Ethylene glycol) mediated immunocamouflage on leukocyte surface marker detection, cell conjugation, activation and alloproliferation.
    Kyluik-Price DL; Scott MD
    Biomaterials; 2016 Jan; 74():167-77. PubMed ID: 26457834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-mediated immunocamouflage of red blood cells: effects of polymer size on antigenic and immunogenic recognition of allogeneic donor blood cells.
    Wang D; Kyluik DL; Murad KL; Toyofuku WM; Scott MD
    Sci China Life Sci; 2011 Jul; 54(7):589-98. PubMed ID: 21701803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning.
    Bradley AJ; Scott MD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 807(1):163-8. PubMed ID: 15177175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG).
    Le Y; Scott MD
    Acta Biomater; 2010 Jul; 6(7):2631-41. PubMed ID: 20109585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoptotic donor leukocytes limit mixed-chimerism induced by CD40-CD154 blockade in allogeneic bone marrow transplantation.
    Li JM; Gorechlad J; Larsen CP; Waller EK
    Biol Blood Marrow Transplant; 2006 Dec; 12(12):1239-49. PubMed ID: 17162205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune complex binding by immunocamouflaged [poly(ethylene glycol)-grafted] erythrocytes.
    Bradley AJ; Scott MD
    Am J Hematol; 2007 Nov; 82(11):970-5. PubMed ID: 17654505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation.
    Wang YC; Tang LY; Li Y; Wang J
    Biomacromolecules; 2009 Jan; 10(1):66-73. PubMed ID: 19133835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of molecular mass of methoxypoly(ethylene glycol) activated with succinimidyl carbonate on camouflaging pancreatic islets.
    Barani L; Vasheghani-Farahani E; Lazarjani HA; Hashemi-Najafabadi S; Atyabi F
    Biotechnol Appl Biochem; 2010 Sep; 57(1):25-30. PubMed ID: 20731621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunomodulatory activity of the seeds of Plantago asiatica L.
    Huang DF; Xie MY; Yin JY; Nie SP; Tang YF; Xie XM; Zhou C
    J Ethnopharmacol; 2009 Jul; 124(3):493-8. PubMed ID: 19467312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential utility of methoxypoly(ethylene glycol)-mediated prevention of rhesus blood group antigen RhD recognition in transfusion medicine.
    Wang D; Toyofuku WM; Scott MD
    Biomaterials; 2012 Apr; 33(10):3002-12. PubMed ID: 22264524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface grafting of PEO-based star-shaped molecules for bioanalytical and biomedical applications.
    Gasteier P; Reska A; Schulte P; Salber J; Offenhäusser A; Moeller M; Groll J
    Macromol Biosci; 2007 Aug; 7(8):1010-23. PubMed ID: 17674362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunologic mechanisms of corneal allografts reconstituted from cultured allogeneic endothelial cells in an immune-privileged site.
    Hayashi T; Yamagami S; Tanaka K; Yokoo S; Usui T; Amano S; Mizuki N
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3151-8. PubMed ID: 19255161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hypomagnesemia on allogeneic activation in mice.
    Sabbagh F; Lecerf F; Hulin A; Bac P; German-Fattal M
    Transpl Immunol; 2008 Nov; 20(1-2):83-7. PubMed ID: 18707001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.