These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 1680946)
1. Energy deposition in small cylindrical targets by monoenergetic electrons. Nikjoo H; Goodhead DT; Charlton DE; Paretzke HG Int J Radiat Biol; 1991 Nov; 60(5):739-56. PubMed ID: 1680946 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo track structure studies of energy deposition and calculation of initial DSB and RBE. Nikjoo H; Charlton DE; Goodhead DT Adv Space Res; 1994 Oct; 14(10):161-80. PubMed ID: 11539948 [TBL] [Abstract][Full Text] [Related]
3. Energy deposition in small cylindrical targets by ultrasoft x-rays. Nikjoo H; Goodhead DT; Charlton DE; Paretzke HG Phys Med Biol; 1989 Jun; 34(6):691-705. PubMed ID: 2740437 [TBL] [Abstract][Full Text] [Related]
4. Track structure analysis of ultrasoft X-rays compared to high- and low-LET radiations. Goodhead DT; Nikjoo H Int J Radiat Biol; 1989 Apr; 55(4):513-29. PubMed ID: 2564863 [TBL] [Abstract][Full Text] [Related]
5. On the consistency of Monte Carlo track structure DNA damage simulations. Pater P; Seuntjens J; El Naqa I; Bernal MA Med Phys; 2014 Dec; 41(12):121708. PubMed ID: 25471955 [TBL] [Abstract][Full Text] [Related]
6. Comparison of various Monte Carlo track structure codes for energetic electrons in gaseous and liquid water. Nikjoo H; Uehara S Basic Life Sci; 1994; 63():167-84; discussion 184-5. PubMed ID: 7755542 [TBL] [Abstract][Full Text] [Related]
7. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm. Famulari G; Pater P; Enger SA Phys Med Biol; 2017 Jul; 62(13):5495-5508. PubMed ID: 28486214 [TBL] [Abstract][Full Text] [Related]
8. A database of frequency distributions of energy depositions in small-size targets by electrons and ions. Nikjoo H; Uehara S; Emfietzoglou D; Pinsky L Radiat Prot Dosimetry; 2011 Feb; 143(2-4):145-51. PubMed ID: 21109546 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. Friedland W; Jacob P; Paretzke HG; Stork T Radiat Res; 1998 Aug; 150(2):170-82. PubMed ID: 9692362 [TBL] [Abstract][Full Text] [Related]
10. Spectrum of Radiation-Induced Clustered Non-DSB Damage - A Monte Carlo Track Structure Modeling and Calculations. Watanabe R; Rahmanian S; Nikjoo H Radiat Res; 2015 May; 183(5):525-40. PubMed ID: 25909147 [TBL] [Abstract][Full Text] [Related]
11. Energy deposition in structural parts of DNA by monoenergetic electrons. Pinak M; Ito A J Radiat Res; 1993 Sep; 34(3):221-34. PubMed ID: 8295167 [TBL] [Abstract][Full Text] [Related]
12. Microdosimetry of low-energy electrons. Liamsuwan T; Emfietzoglou D; Uehara S; Nikjoo H Int J Radiat Biol; 2012 Dec; 88(12):899-907. PubMed ID: 22668077 [TBL] [Abstract][Full Text] [Related]
13. Track structure analysis illustrating the prominent role of low-energy electrons in radiobiological effects of low-LET radiations. Nikjoo H; Goodhead DT Phys Med Biol; 1991 Feb; 36(2):229-38. PubMed ID: 2008448 [TBL] [Abstract][Full Text] [Related]
14. Nanodosimetric Simulation of Direct Ion-Induced DNA Damage Using Different Chromatin Geometry Models. Henthorn NT; Warmenhoven JW; Sotiropoulos M; Mackay RI; Kirkby KJ; Merchant MJ Radiat Res; 2017 Dec; 188(6):690-703. PubMed ID: 28792846 [TBL] [Abstract][Full Text] [Related]
15. Track structure and DNA damage. Kramer M; Kraft G Adv Space Res; 1994 Oct; 14(10):151-9. PubMed ID: 11539947 [TBL] [Abstract][Full Text] [Related]
16. Auger-electron cascades, charge potential and microdosimetry of iodine-125. Booz J; Paretzke HG; Pomplun E; Olko P Radiat Environ Biophys; 1987; 26(2):151-62. PubMed ID: 3615808 [TBL] [Abstract][Full Text] [Related]
17. Model for radial dependence of frequency distributions for energy imparted in nanometer volumes from HZE particles. Cucinotta FA; Nikjoo H; Goodhead DT Radiat Res; 2000 Apr; 153(4):459-68. PubMed ID: 10761008 [TBL] [Abstract][Full Text] [Related]
18. A comparison of X-ray and proton beam low energy secondary electron track structures using the low energy models of Geant4. McNamara AL; Guatelli S; Prokopovich DA; Reinhard MI; Rosenfeld AB Int J Radiat Biol; 2012 Jan; 88(1-2):164-70. PubMed ID: 22040102 [TBL] [Abstract][Full Text] [Related]
19. Calculations of absorbed fractions in small water spheres for low-energy monoenergetic electrons and the Auger-emitting radionuclides (123)Ι and (125)Ι. Bousis C; Emfietzoglou D; Nikjoo H Int J Radiat Biol; 2012 Dec; 88(12):916-21. PubMed ID: 22348619 [TBL] [Abstract][Full Text] [Related]
20. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations. Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]