BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16809541)

  • 1. Ammonia channel couples glutaminase with transamidase reactions in GatCAB.
    Nakamura A; Yao M; Chimnaronk S; Sakai N; Tanaka I
    Science; 2006 Jun; 312(5782):1954-8. PubMed ID: 16809541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of RNA-dependent recruitment of glutamine to the genetic code.
    Oshikane H; Sheppard K; Fukai S; Nakamura Y; Ishitani R; Numata T; Sherrer RL; Feng L; Schmitt E; Panvert M; Blanquet S; Mechulam Y; Söll D; Nureki O
    Science; 2006 Jun; 312(5782):1950-4. PubMed ID: 16809540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme.
    Wu J; Bu W; Sheppard K; Kitabatake M; Kwon ST; Söll D; Smith JL
    J Mol Biol; 2009 Aug; 391(4):703-16. PubMed ID: 19520089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln.
    Sheppard K; Akochy PM; Salazar JC; Söll D
    J Biol Chem; 2007 Apr; 282(16):11866-73. PubMed ID: 17329242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions.
    Ito T; Yokoyama S
    Nature; 2010 Sep; 467(7315):612-6. PubMed ID: 20882017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition.
    Nakamura A; Sheppard K; Yamane J; Yao M; Söll D; Tanaka I
    Nucleic Acids Res; 2010 Jan; 38(2):672-82. PubMed ID: 19906721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of ammonia transfer along two intramolecular tunnels in Staphylococcus aureus glutamine-dependent amidotransferase (GatCAB).
    Dewage SW; Cisneros GA
    J Phys Chem B; 2015 Mar; 119(9):3669-77. PubMed ID: 25654336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for tRNA-dependent amidotransferase function.
    Schmitt E; Panvert M; Blanquet S; Mechulam Y
    Structure; 2005 Oct; 13(10):1421-33. PubMed ID: 16216574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of nondiscriminating glutamyl-tRNA synthetase from Thermotoga maritima.
    Ito T; Kiyasu N; Matsunaga R; Takahashi S; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2010 Jul; 66(Pt 7):813-20. PubMed ID: 20606262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.
    Rould MA; Perona JJ; Steitz TA
    Nature; 1991 Jul; 352(6332):213-8. PubMed ID: 1857417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-evolution of the archaeal tRNA-dependent amidotransferase GatCAB with tRNA(Asn).
    Namgoong S; Sheppard K; Sherrer RL; Söll D
    FEBS Lett; 2007 Jan; 581(2):309-14. PubMed ID: 17214986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and functional characterization of the Glu-tRNA(Gln) amidotransferase from Chlamydomonas reinhardtii.
    Jahn D; Kim YC; Ishino Y; Chen MW; Söll D
    J Biol Chem; 1990 May; 265(14):8059-64. PubMed ID: 1970821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine.
    Bailly M; Giannouli S; Blaise M; Stathopoulos C; Kern D; Becker HD
    Nucleic Acids Res; 2006; 34(21):6083-94. PubMed ID: 17074748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP.
    Arnez JG; Steitz TA
    Biochemistry; 1996 Nov; 35(47):14725-33. PubMed ID: 8942633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tertiary core rearrangements in a tight binding transfer RNA aptamer.
    Bullock TL; Sherlin LD; Perona JJ
    Nat Struct Biol; 2000 Jun; 7(6):497-504. PubMed ID: 10881199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the glutamyl-tRNA(Gln)-to-glutaminyl-tRNA(Gln) amidotransferase reaction of Bacillus subtilis.
    Strauch MA; Zalkin H; Aronson AI
    J Bacteriol; 1988 Feb; 170(2):916-20. PubMed ID: 2892827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M; Sauter C; Becker HD; Paulus CA; Giegé R; Kern D
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanothermobacter thermautotrophicus tRNA Gln confines the amidotransferase GatCAB to asparaginyl-tRNA Asn formation.
    Sheppard K; Sherrer RL; Söll D
    J Mol Biol; 2008 Mar; 377(3):845-53. PubMed ID: 18291416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.