BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16809630)

  • 1. Feedback-controlled stimulation enhances human paralyzed muscle performance.
    Shields RK; Dudley-Javoroski S; Cole KR
    J Appl Physiol (1985); 2006 Nov; 101(5):1312-9. PubMed ID: 16809630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
    Shields RK; Dudley-Javoroski S; Littmann AE
    J Appl Physiol (1985); 2006 Aug; 101(2):556-65. PubMed ID: 16575026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing muscle force and femur compressive loads via feedback-controlled stimulation of paralyzed quadriceps in humans.
    Dudley-Javoroski S; Littmann AE; Chang SH; McHenry CL; Shields RK
    Arch Phys Med Rehabil; 2011 Feb; 92(2):242-9. PubMed ID: 21272720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    Neurorehabil Neural Repair; 2007; 21(2):169-79. PubMed ID: 17312092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doublet electrical stimulation enhances torque production in people with spinal cord injury.
    Chang YJ; Shields RK
    Neurorehabil Neural Repair; 2011 Jun; 25(5):423-32. PubMed ID: 21304018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within-train neuromuscular propagation varies with torque in paralyzed human muscle.
    Chang YJ; Shields RK
    Muscle Nerve; 2002 Nov; 26(5):673-80. PubMed ID: 12402290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    J Neurophysiol; 2006 Apr; 95(4):2380-90. PubMed ID: 16407424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle.
    Cole KR; Dudley-Javoroski S; Shields RK
    J Spinal Cord Med; 2019 Sep; 42(5):562-570. PubMed ID: 29923814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle.
    Shields RK
    J Neurophysiol; 1995 Jun; 73(6):2195-206. PubMed ID: 7666132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).
    Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ
    BMC Neurol; 2018 Feb; 18(1):17. PubMed ID: 29433467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
    Shields RK; Dudley-Javoroski S
    Clin Neurophysiol; 2013 Sep; 124(9):1853-60. PubMed ID: 23673062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially distributed sequential stimulation reduces fatigue in paralyzed triceps surae muscles: a case study.
    Nguyen R; Masani K; Micera S; Morari M; Popovic MR
    Artif Organs; 2011 Dec; 35(12):1174-80. PubMed ID: 21501192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans.
    Shields RK; Law LF; Reiling B; Sass K; Wilwert J
    J Appl Physiol (1985); 1997 May; 82(5):1499-507. PubMed ID: 9134899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular propagation after fatiguing contractions of the paralyzed soleus muscle in humans.
    Shields RK; Chang YJ; Ross M
    Muscle Nerve; 1998 Jun; 21(6):776-87. PubMed ID: 9585332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features.
    Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG
    J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching stimulation patterns improves performance of paralyzed human quadriceps muscle.
    Scott WB; Lee SC; Johnston TE; Binder-Macleod SA
    Muscle Nerve; 2005 May; 31(5):581-8. PubMed ID: 15779000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electrical stimulation pattern on quadriceps isometric force and fatigue in individuals with spinal cord injury.
    Deley G; Denuziller J; Babault N; Taylor JA
    Muscle Nerve; 2015 Aug; 52(2):260-4. PubMed ID: 25430542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    Phys Ther; 2008 Mar; 88(3):387-96. PubMed ID: 18202080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation.
    Hayashibe M; Zhang Q; Guiraud D; Fattal C
    J Neural Eng; 2011 Dec; 8(6):064001. PubMed ID: 21975831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing.
    Dudley-Javoroski S; Littmann AE; Iguchi M; Shields RK
    J Appl Physiol (1985); 2008 Jun; 104(6):1574-82. PubMed ID: 18436697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.