These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 16810251)

  • 1. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters.
    Sun D; Riley AE; Cadby AJ; Richman EK; Korlann SD; Tolbert SH
    Nature; 2006 Jun; 441(7097):1126-30. PubMed ID: 16810251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of periodic hexagonal surfactant templated platinum tin tellurides: narrow band gap inorganic/organic composites.
    Riley AE; Tolbert SH
    J Am Chem Soc; 2003 Apr; 125(15):4551-9. PubMed ID: 12683826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor.
    Korlann SD; Riley AE; Kirsch BL; Mun BS; Tolbert SH
    J Am Chem Soc; 2005 Sep; 127(36):12516-27. PubMed ID: 16144399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesostructured germanium with cubic pore symmetry.
    Armatas GS; Kanatzidis MG
    Nature; 2006 Jun; 441(7097):1122-5. PubMed ID: 16810250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientational organization of organic semiconductors within periodic nanoscale silica channels: modification of fluorophore photophysics through hierarchical self-assembly.
    Li LL; Sun H; Bai YC; Fang CJ; Yan CH
    Chemistry; 2009; 15(18):4716-24. PubMed ID: 19291722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varied pore organization in mesostructured semiconductors based on the [SnSe4](4-) anion.
    Trikalitis PN; Rangan KK; Bakas T; Kanatzidis MG
    Nature; 2001 Apr; 410(6829):671-5. PubMed ID: 11287949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling interfacial curvature in nanoporous silica films formed by evaporation-induced self-assembly from nonionic surfactants. I. Evolution of nanoscale structures in coating solutions.
    Bollmann L; Urade VN; Hillhouse HW
    Langmuir; 2007 Apr; 23(8):4257-67. PubMed ID: 17346065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered nanoporous polymer-carbon composites.
    Choi M; Ryoo R
    Nat Mater; 2003 Jul; 2(7):473-6. PubMed ID: 12819774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials.
    Yamauchi Y; Suzuki N; Radhakrishnan L; Wang L
    Chem Rec; 2009; 9(6):321-39. PubMed ID: 20069589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure.
    Che S; Garcia-Bennett AE; Yokoi T; Sakamoto K; Kunieda H; Terasaki O; Tatsumi T
    Nat Mater; 2003 Dec; 2(12):801-5. PubMed ID: 14634644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered mesoporous non-oxide materials.
    Shi Y; Wan Y; Zhao D
    Chem Soc Rev; 2011 Jul; 40(7):3854-78. PubMed ID: 21423925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporous compound semiconductors from the reaction of metal ions with deltahedral [Ge9]4- clusters.
    Armatas GS; Kanatzidis MG
    J Am Chem Soc; 2008 Aug; 130(34):11430-6. PubMed ID: 18680285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General method for the synthesis of hierarchical nanocrystal-based mesoporous materials.
    Rauda IE; Buonsanti R; Saldarriaga-Lopez LC; Benjauthrit K; Schelhas LT; Stefik M; Augustyn V; Ko J; Dunn B; Wiesner U; Milliron DJ; Tolbert SH
    ACS Nano; 2012 Jul; 6(7):6386-99. PubMed ID: 22731824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulus-density scaling behaviour and framework architecture of nanoporous self-assembled silicas.
    Fan H; Hartshorn C; Buchheit T; Tallant D; Assink R; Simpson R; Kissel DJ; Lacks DJ; Torquato S; Brinker CJ
    Nat Mater; 2007 Jun; 6(6):418-23. PubMed ID: 17515915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.
    Wang D; Kou R; Choi D; Yang Z; Nie Z; Li J; Saraf LV; Hu D; Zhang J; Graff GL; Liu J; Pope MA; Aksay IA
    ACS Nano; 2010 Mar; 4(3):1587-95. PubMed ID: 20184383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and self-assembly of surfactant/supercritical CO2 systems in confined pores: a molecular dynamics simulation.
    Xu Z; Yang X; Yang Z
    Langmuir; 2007 Aug; 23(18):9201-12. PubMed ID: 17676777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures.
    Zhang Q; Atay T; Tischler JR; Bradley MS; Bulović V; Nurmikko AV
    Nat Nanotechnol; 2007 Sep; 2(9):555-9. PubMed ID: 18654367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexagonal mesoporous germanium.
    Armatas GS; Kanatzidis MG
    Science; 2006 Aug; 313(5788):817-20. PubMed ID: 16857901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-, one-, and zero-dimensional elemental nanostructures based on Ge(9)-clusters.
    Karttunen AJ; Fässler TF; Linnolahti M; Pakkanen TA
    Chemphyschem; 2010 Jun; 11(9):1944-50. PubMed ID: 20446334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.